Approximation of Steiner forest via the bidirected cut relaxation

被引:0
作者
Ali Çivril
机构
来源
Journal of Combinatorial Optimization | 2019年 / 38卷
关键词
Steiner forest; Bidirected cut relaxation; Primal-dual schema; Approximation algorithms; Combinatorial optimization;
D O I
暂无
中图分类号
学科分类号
摘要
The classical algorithm of Agrawal et al. (SIAM J Comput 24(3):440–456, 1995), stated in the setting of the primal-dual schema by Goemans and Williamson (SIAM J Comput 24(2):296–317, 1995) uses the undirected cut relaxation for the Steiner forest problem. Its approximation ratio is 2-1k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2-\frac{1}{k}$$\end{document}, where k is the number of terminal pairs. A variant of this algorithm more recently proposed by Könemann et al. (SIAM J Comput 37(5):1319–1341, 2008) is based on the lifted cut relaxation. In this paper, we continue this line of work and consider the bidirected cut relaxation for the Steiner forest problem, which lends itself to a novel algorithmic idea yielding the same approximation ratio as the classical algorithm. In doing so, we introduce an extension of the primal-dual schema in which we run two different phases to satisfy connectivity requirements in both directions. This reveals more about the combinatorial structure of the problem. In particular, there are examples on which the classical algorithm fails to give a good approximation, but the new algorithm finds a near-optimal solution.
引用
收藏
页码:1196 / 1212
页数:16
相关论文
共 50 条
[11]   Approximation Schemes for Steiner Forest on Planar Graphs and Graphs of Bounded Treewidth [J].
Bateni, Mohammadhossein ;
Hajiaghayi, Mohammadtaghi ;
Marx, Daniel .
JOURNAL OF THE ACM, 2011, 58 (05)
[12]   Approximate k-Steiner Forests via the Lagrangian Relaxation Technique with Internal Preprocessing [J].
Danny Segev ;
Gil Segev .
Algorithmica, 2010, 56 :529-549
[13]   Approximate k-Steiner Forests via the Lagrangian Relaxation Technique with Internal Preprocessing [J].
Segev, Danny ;
Segev, Gil .
ALGORITHMICA, 2010, 56 (04) :529-549
[14]   PARAMETERIZED APPROXIMATION SCHEMES FOR STEINER TREES WITH SMALL NUMBER OF STEINER VERTICES [J].
Dvorak, Pavel ;
Feldmann, Andreas E. ;
Knop, Dusan ;
Masarik, Tomas ;
Toufar, Tomas ;
Vesely, Pavel .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (01) :546-574
[15]   Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices [J].
Dvorak, Pavel ;
Feldmann, Andreas Emil ;
Knop, Dusan ;
Masarik, Tomas ;
Toufar, Tomas ;
Vesely, Pavel .
35TH SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2018), 2018, 96
[16]   Parallel Greedy Algorithms for Steiner Forest [J].
Ghalami, Laleh ;
Grosu, Daniel .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2025, 36 (06) :1311-1325
[17]   An improved approximation scheme for the Group Steiner Problem [J].
Helvig, CS ;
Robins, G ;
Zelikovsky, A .
NETWORKS, 2001, 37 (01) :8-20
[18]   Euclidean Prize-Collecting Steiner Forest [J].
Bateni, MohammadHossein ;
Hajiaghayi, MohammadTaghi .
ALGORITHMICA, 2012, 62 (3-4) :906-929
[19]   Euclidean Prize-Collecting Steiner Forest [J].
MohammadHossein Bateni ;
MohammadTaghi Hajiaghayi .
Algorithmica, 2012, 62 :906-929
[20]   Primal-dual approximation algorithms for Node-Weighted Steiner Forest on planar graphs [J].
Moldenhauer, Carsten .
INFORMATION AND COMPUTATION, 2013, 222 :293-306