MV-algebras as sheaves of ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-groups on fuzzy topological spaces

被引:0
作者
Luz Victoria De La Pava
Ciro Russo
机构
[1] Universidad del Valle,Departamento de Matemáticas
[2] Universidade Federal da Bahia,Departamento de Matemática
关键词
MV-algebra; Sheaf representation; Fuzzy topology; Lattice-ordered group;
D O I
10.1007/s00500-020-04944-2
中图分类号
学科分类号
摘要
We introduce the concept of fuzzy sheaf as a natural generalization of a sheaf over a topological space in the context of fuzzy topologies. Then, we prove a representation for a class of MV-algebras that we called “locally retractive,” in which the representing object is an MV-sheaf of lattice-ordered Abelian groups, namely a fuzzy sheaf in which the base (fuzzy) topological space is an MV-topological space and the stalks are Abelian ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-groups. Last, we show that any MV-algebra is embeddable in a locally retractive algebra and, therefore, in the algebra of global sections of one of such sheaves.
引用
收藏
页码:8793 / 8804
页数:11
相关论文
共 38 条
[1]  
Belluce LP(1986)Semisimple algebras of infinite valued logic and bold fuzzy set theory Can J Math 38 1356-1379
[2]  
Chang CC(1958)Algebraic analysis of many valued logic Trans Am Math Soc 88 467-490
[3]  
Chang CC(1959)A new proof of the completeness of the Łukasiewicz axioms Trans Am Math Soc 93 74-90
[4]  
Chang CL(1968)Fuzzy topological spaces J Math Anal App 24 182-190
[5]  
Cignoli RLO(1995)Retractive MV-algebras Math Soft Comput 2 157-165
[6]  
Torrens A(1973)Sheaf spaces and sheaves of universal algebras Math Z 134 275-290
[7]  
Davey B(2020)Compactness in MV-topologies: tychonoff theorem and Stone–Čech compactification Arch Math Logic 59 57-79
[8]  
De La Pava LV(2014)Lexicographic MV-algebras and lexicographic states Fuzzy Sets Syst 244 63-85
[9]  
Russo C(1991)Representation and reticulation by quotients of MV-algebras Ricerche Mat 40 291-297
[10]  
Diaconescu D(2007)Local algebras in the representation of MV-algebras Algebra Univ 56 133-164