On the ε-entropy of classes of holomorphic functions

被引:0
|
作者
Yu. A. Farkov
机构
[1] Moscow State Mineral Prospecting Academy,
来源
Mathematical Notes | 2000年 / 68卷
关键词
ε-entropy; holomorphic function; Hardy space; -width; Jordan measure;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose thatBRd is a ball of radiusR in ℂd and σ is the standard measure on the unit sphere in ℂd. ForR>1, 1≤p≤∞, and for the natural numbersl, d, byHR0(l, p, d) we denote the class of functionsf holomorphic inBRd and such that in the homogeneous polynomial expansion of the firstl summands the zero and radial derivatives of orderl belong to the closed unit ball of the Hardy spaceHp(BRd). In this paper an asymptotic formula for the ε-entropy of the classHR0(l, p, d) in the spacesLp(σ), 1≤p<∞, and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$C(\bar B_1^d )$$ \end{document} is obtained.
引用
收藏
页码:248 / 254
页数:6
相关论文
共 50 条