Numerical simulations of noisy quantum circuits for computational chemistry

被引:5
|
作者
Jerimiah Wright
Meenambika Gowrishankar
Daniel Claudino
Phillip C. Lotshaw
Thien Nguyen
Alexander J. McCaskey
Travis S. Humble
机构
[1] Oak Ridge National Laboratory,Quantum Computational Sciences Group
[2] Oak Ridge National Laboratory,Quantum Science Center
[3] University of Tennessee,Bredesen Center
[4] Oak Ridge National Laboratory,Beyond Moore Computing Group
来源
Materials Theory | / 6卷 / 1期
关键词
Variational Quantum Algorithms; Noise; Quantum Chemistry; Quantum Computing;
D O I
10.1186/s41313-022-00047-7
中图分类号
学科分类号
摘要
The opportunities afforded by near-term quantum computers to calculate the ground-state properties of small molecules depend on the structure of the computational ansatz as well as the errors induced by device noise. Here we investigate the behavior of these noisy quantum circuits using numerical simulations to estimate the accuracy and fidelity of the prepared quantum states relative to the ground truth obtained by conventional means. We implement several different types of ansatz circuits derived from unitary coupled cluster theory for the purposes of estimating the ground-state energy of sodium hydride using the variational quantum eigensolver algorithm. We show how relative error in the energy and the fidelity scale with the levels of gate-based noise, the internuclear configuration, the ansatz circuit depth, and the parameter optimization methods.
引用
收藏
相关论文
共 50 条
  • [1] Numerical Simulations of Noisy Quantum Circuits for Computational Chemistry
    Gowrishankar, Meenambika
    Wright, Jerimiah
    Claudino, Daniel
    Lotshaw, Phillip
    Thien Nguyen
    McCaskey, Alex
    Humble, Travis
    2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 813 - 815
  • [2] Numerical Simulations of Noisy Variational Quantum Eigensolver Ansatz Circuits
    Gowrishankar, Meenambika
    Wright, Jerimiah
    Claudino, Daniel
    Thien Nguyen
    McCaskey, Alexander
    Humble, Travis S.
    2021 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2021) / QUANTUM WEEK 2021, 2021, : 155 - 159
  • [3] Approximate Equivalence Checking of Noisy Quantum Circuits
    Hong, Xin
    Ying, Mingsheng
    Feng, Yuan
    Zhou, Xiangzhen
    Li, Sanjiang
    2021 58TH ACM/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2021, : 637 - 642
  • [4] Characterizing the Reproducibility of Noisy Quantum Circuits
    Dasgupta, Samudra
    Humble, Travis S.
    ENTROPY, 2022, 24 (02)
  • [5] A Case for Noisy Shallow Gate-based Circuits in Quantum Machine Learning
    Selig, Patrick
    Murphy, Niall
    Sundareswaran, Ashwin R.
    Redmond, David
    Caton, Simon
    2021 INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC 2021), 2021, : 24 - 34
  • [6] Computational chemistry on quantum computersGround state estimation
    V. Armaos
    Dimitrios A. Badounas
    Paraskevas Deligiannis
    Konstantinos Lianos
    Applied Physics A, 2020, 126
  • [7] Machine learning the computational cost of quantum chemistry
    Heinen, Stefan
    Schwilk, Max
    von Rudorff, Guido Falk
    von Lilienfeld, O. Anatole
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (02):
  • [8] Quantum chemical exercise linking computational chemistry to general chemistry topics
    Simpson, Scott
    Evanoski-Cole, Ashley
    Gast, Kellie
    Wedvik, Madeleine C.
    Schneider, Patrick W.
    Klingensmith, Isaac
    CHEMISTRY TEACHER INTERNATIONAL, 2021, 3 (01)
  • [9] Disciplines, models, and computers: The path to computational quantum chemistry
    Lenhard, Johannes
    STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE, 2014, 48 : 89 - 96
  • [10] Computational chemistry on quantum computers: Ground state estimation
    Armaos, V
    Badounas, Dimitrios A.
    Deligiannis, Paraskevas
    Lianos, Konstantinos
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2020, 126 (08):