Numerical simulations of noisy quantum circuits for computational chemistry

被引:5
作者
Jerimiah Wright
Meenambika Gowrishankar
Daniel Claudino
Phillip C. Lotshaw
Thien Nguyen
Alexander J. McCaskey
Travis S. Humble
机构
[1] Oak Ridge National Laboratory,Quantum Computational Sciences Group
[2] Oak Ridge National Laboratory,Quantum Science Center
[3] University of Tennessee,Bredesen Center
[4] Oak Ridge National Laboratory,Beyond Moore Computing Group
来源
Materials Theory | / 6卷 / 1期
关键词
Variational Quantum Algorithms; Noise; Quantum Chemistry; Quantum Computing;
D O I
10.1186/s41313-022-00047-7
中图分类号
学科分类号
摘要
The opportunities afforded by near-term quantum computers to calculate the ground-state properties of small molecules depend on the structure of the computational ansatz as well as the errors induced by device noise. Here we investigate the behavior of these noisy quantum circuits using numerical simulations to estimate the accuracy and fidelity of the prepared quantum states relative to the ground truth obtained by conventional means. We implement several different types of ansatz circuits derived from unitary coupled cluster theory for the purposes of estimating the ground-state energy of sodium hydride using the variational quantum eigensolver algorithm. We show how relative error in the energy and the fidelity scale with the levels of gate-based noise, the internuclear configuration, the ansatz circuit depth, and the parameter optimization methods.
引用
收藏
相关论文
共 244 条
[1]  
Arute F.(2020)Hartree-fock on a superconducting qubit quantum computer Science 369 1084-1089
[2]  
Arya K.(2018)Quantum algorithms for electronic structure calculations: Particle-hole hamiltonian and optimized wave-function expansions Phys. Rev. A 98 022322-12717
[3]  
Babbush R.(2020)Quantum algorithms for quantum chemistry and quantum materials science Chem. Rev. 120 12685-10915
[4]  
Bacon D.(2019)Quantum simulations of excited states with active-space downfolded hamiltonians J. Chem. Phys. 151 234114-9
[5]  
Bardin J. C.(2019)Quantum chemistry in the age of quantum computing Chem. Rev. 119 10856-6
[6]  
Barends R.(2021)Improving the accuracy and efficiency of quantum connected moments expansions Quantum Sci. Technol. 6 034012-9
[7]  
Boixo S.(2020)Benchmarking adaptive variational quantum eigensolvers Front. Chem. 8 1152-246
[8]  
Broughton M.(2018)mlpack 3: a fast, flexible C++ machine learning library J. Open Source Softw. 3 726-528
[9]  
Buckley B. B.(2021)Modeling noisy quantum circuits using experimental characterization Phys. Rev. A 103 042603-8
[10]  
Buell D. A.(2021)Simulating quantum chemistry in the seniority-zero space on qubit-based quantum computers Phys. Rev. A 103 032605-6175