Compactons in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P}\mathcal{T} $$\end{document}-symmetric generalized Korteweg-de Vries equations

被引:0
|
作者
Carl M. Bender
Fred Cooper
Avinash Khare
Bogdan Mihaila
Avadh Saxena
机构
[1] Washington University,Department of Physics
[2] Division of Physics,National Science Foundation
[3] Santa Fe Institute,Institute of Physics
[4] Sachivalaya Marg,Material Science and Technology Division
[5] Los Alamos National Laboratory,Theoretical Division and Center for Nonlinear Studies
[6] Los Alamos National Laboratory,undefined
关键词
Compactons; symmetry; generalized KdV equations; 03.65.Ge; 02.60.Lj; 11.30.Er; 52.35.Sb;
D O I
10.1007/s12043-009-0129-1
中图分类号
学科分类号
摘要
This paper considers the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P}\mathcal{T} $$\end{document}-symmetric extensions of the equations examined by Cooper, Shepard and Sodano. From the scaling properties of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P}\mathcal{T} $$\end{document}-symmetric equations a general theorem relating the energy, momentum and velocity of any solitarywave solution of the generalized KdV equation is derived. We also discuss the stability of the compacton solution as a function of the parameters affecting the nonlinearities.
引用
收藏
页码:375 / 385
页数:10
相关论文
共 50 条