Shifts, rotations and distributional chaos

被引:0
作者
Dongsheng Xu
Kaili Xiang
Shudi Liang
机构
[1] Southwestern University of Finance and Economics,School of Economic Mathematics
[2] Southwest Petroleum University,School of Sciences
来源
Advances in Difference Equations | / 2019卷
关键词
Distributional chaos; -sensitivity; -sensitivity; Dense chaos; 54H20;
D O I
暂无
中图分类号
学科分类号
摘要
Let Rr0,Rr1:S1⟶S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{r_{0}}, R_{r_{1}}: \mathbb{S}^{1}\longrightarrow \mathbb{S} ^{1}$\end{document} be rotations on the unit circle S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{S}^{1}$\end{document} and define f:Σ2×S1⟶Σ2×S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f: \varSigma _{2}\times \mathbb{S}^{1}\longrightarrow \varSigma _{2}\times \mathbb{S}^{1}$\end{document} as f(x,t)=(σ(x),Rrx1(t)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f(x, t)=\bigl(\sigma (x), R_{r_{x_{1}}}(t)\bigr), $$\end{document} for x=x1x2⋯∈Σ2:={0,1}N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x=x_{1}x_{2}\cdots \in \varSigma _{2}:=\{0, 1\}^{\mathbb{N}}$\end{document}, t∈S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\in \mathbb{S}^{1}$\end{document}, where σ:Σ2⟶Σ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma: \varSigma _{2}\longrightarrow \varSigma _{2}$\end{document} is the shift, and r0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{0}$\end{document} and r1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{1}$\end{document} are rotational angles. It is first proved that the system (Σ2×S1,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\varSigma _{2}\times \mathbb{S}^{1}, f)$\end{document} exhibits maximal distributional chaos for any r0,r1∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{0}, r_{1}\in \mathbb{R}$\end{document} (no assumption of r0,r1∈R∖Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{0}, r_{1}\in \mathbb{R}\setminus \mathbb{Q}$\end{document}), generalizing Theorem 1 in Wu and Chen (Topol. Appl. 162:91–99, 2014). It is also obtained that (Σ2×S1,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\varSigma _{2}\times \mathbb{S}^{1}, f)$\end{document} is cofinitely sensitive and (Mˆ1,Mˆ1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\hat{\mathscr{M}} ^{1}, \hat{\mathscr{M}}^{1})$\end{document}-sensitive and that (Σ2×S1,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\varSigma _{2}\times \mathbb{S}^{1}, f)$\end{document} is densely chaotic if and only if r1−r0∈R∖Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{1}-r_{0} \in \mathbb{R}\setminus \mathbb{Q}$\end{document}.
引用
收藏
相关论文
共 50 条
[21]   A type of shadowing and distributional chaos [J].
Kawaguchi, Noriaki .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2021, 36 (04) :572-585
[22]   Strong and weak distributional chaos [J].
Stefankova, M. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (01) :114-123
[23]   DISTRIBUTIONAL CHAOS AND DISTRIBUTIONAL CHAOS IN A SEQUENCE OCCURRING ON A SUBSET OF THE ONE-SIDED SYMBOLIC SYSTEM [J].
Tang, Yanjie ;
Yin, Jiandong .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (01) :95-108
[24]   Invariant scrambled sets and distributional chaos [J].
Oprocha, Piotr .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2009, 24 (01) :31-43
[25]   Distributional chaos in random dynamical systems [J].
Kovac, Jozef ;
Jankova, Katarina .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2019, 25 (04) :455-480
[27]   On a problem of iteration invariants for distributional chaos [J].
Dvorakova, J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (02) :785-787
[28]   Distributional Chaos in Coupled Map Lattices [J].
Wang, Lidong ;
Li, Bing ;
Chu, Zhenyan .
CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, :1067-+
[29]   Minimality and distributional chaos in triangular maps [J].
Balibrea, Francisco ;
Rucka, Lenka .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2023, :1662-1670
[30]   Specification properties and dense distributional chaos [J].
Oprocha, Piotr .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 17 (04) :821-833