Shifts, rotations and distributional chaos

被引:0
|
作者
Dongsheng Xu
Kaili Xiang
Shudi Liang
机构
[1] Southwestern University of Finance and Economics,School of Economic Mathematics
[2] Southwest Petroleum University,School of Sciences
来源
Advances in Difference Equations | / 2019卷
关键词
Distributional chaos; -sensitivity; -sensitivity; Dense chaos; 54H20;
D O I
暂无
中图分类号
学科分类号
摘要
Let Rr0,Rr1:S1⟶S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{r_{0}}, R_{r_{1}}: \mathbb{S}^{1}\longrightarrow \mathbb{S} ^{1}$\end{document} be rotations on the unit circle S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{S}^{1}$\end{document} and define f:Σ2×S1⟶Σ2×S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f: \varSigma _{2}\times \mathbb{S}^{1}\longrightarrow \varSigma _{2}\times \mathbb{S}^{1}$\end{document} as f(x,t)=(σ(x),Rrx1(t)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f(x, t)=\bigl(\sigma (x), R_{r_{x_{1}}}(t)\bigr), $$\end{document} for x=x1x2⋯∈Σ2:={0,1}N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x=x_{1}x_{2}\cdots \in \varSigma _{2}:=\{0, 1\}^{\mathbb{N}}$\end{document}, t∈S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\in \mathbb{S}^{1}$\end{document}, where σ:Σ2⟶Σ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma: \varSigma _{2}\longrightarrow \varSigma _{2}$\end{document} is the shift, and r0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{0}$\end{document} and r1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{1}$\end{document} are rotational angles. It is first proved that the system (Σ2×S1,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\varSigma _{2}\times \mathbb{S}^{1}, f)$\end{document} exhibits maximal distributional chaos for any r0,r1∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{0}, r_{1}\in \mathbb{R}$\end{document} (no assumption of r0,r1∈R∖Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{0}, r_{1}\in \mathbb{R}\setminus \mathbb{Q}$\end{document}), generalizing Theorem 1 in Wu and Chen (Topol. Appl. 162:91–99, 2014). It is also obtained that (Σ2×S1,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\varSigma _{2}\times \mathbb{S}^{1}, f)$\end{document} is cofinitely sensitive and (Mˆ1,Mˆ1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\hat{\mathscr{M}} ^{1}, \hat{\mathscr{M}}^{1})$\end{document}-sensitive and that (Σ2×S1,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\varSigma _{2}\times \mathbb{S}^{1}, f)$\end{document} is densely chaotic if and only if r1−r0∈R∖Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{1}-r_{0} \in \mathbb{R}\setminus \mathbb{Q}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Shifts, rotations and distributional chaos
    Xu, Dongsheng
    Xiang, Kaili
    Liang, Shudi
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [2] Distributional chaos for backward shifts
    Martinez-Gimenez, Felix
    Oprocha, Piotr
    Peris, Alfredo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (02) : 607 - 615
  • [3] INVARIANCE OF DISTRIBUTIONAL CHAOS FOR BACKWARD SHIFTS
    Wu, Xinxing
    Luo, Yang
    OPERATORS AND MATRICES, 2020, 14 (01): : 1 - 7
  • [4] Generic and dense distributional chaos with shadowing
    Kawaguchi, Noriaki
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2021, 27 (10) : 1456 - 1481
  • [5] DISTRIBUTIONAL CHAOS REVISITED
    Oprocha, Piotr
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (09) : 4901 - 4925
  • [6] Distributional chaos and factors
    Dolezelova-Hantakova, Jana
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (01) : 99 - 106
  • [7] Local Distributional Chaos
    Francisco Balibrea
    Lenka Rucká
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [8] Distributional Chaos and Dendrites
    Roth, Zuzana
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (14):
  • [9] Local Distributional Chaos
    Balibrea, Francisco
    Rucka, Lenka
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (04)
  • [10] DISTRIBUTIONAL CHAOS FOR FLOWS
    Zhou, Yunhua
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (02) : 475 - 480