The stability of the solutions of an equation related to the p-Laplacian with degeneracy on the boundary

被引:0
|
作者
Huashui Zhan
机构
[1] Xiamen University of Technology,School of Applied Mathematics
来源
Boundary Value Problems | / 2016卷
关键词
stability; boundary degeneracy; the ; -Laplacian; 35L65; 35L85; 35R35;
D O I
暂无
中图分类号
学科分类号
摘要
The equation related to the p-Laplacian ut=div(ρα|∇u|p−2∇u)+∑i=1N∂bi(u)∂xi,(x,t)∈Ω×(0,T),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{t}= \operatorname{div} \bigl(\rho^{\alpha} \vert \nabla u \vert ^{p - 2}\nabla u \bigr) + \sum_{i = 1}^{N} \frac{\partial b_{i}(u)}{\partial x_{i}},\quad (x,t) \in \Omega \times(0,T), $$\end{document} is considered, where ρ(x)=dist(x,∂Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho(x) = \operatorname{dist} (x,\partial\Omega )$\end{document} is the distance function from the boundary. If α<p−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha< p-1$\end{document}, the weak solution belongs to Hγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{\gamma}$\end{document} for some γ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma>1$\end{document}, the Dirichlet boundary condition can be imposed as usual, the stability of the solutions is proved. If α≥p−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\geq p-1$\end{document}, the weak solution lacks the regularity to define the trace on the boundary. It is surprising that we can still prove the stability of the solutions without any boundary condition. In other words, when α≥p−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\geq p-1$\end{document}, the phenomenon that the solutions of the equation may be free from any limitations of the boundary condition is revealed.
引用
收藏
相关论文
共 50 条
  • [21] On the principal eigencurve of the p-Laplacian:: Stability phenomena
    El Khalil, Abdelouahed
    El Manouni, Said
    Ouanan, Mohammed
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2006, 49 (03): : 358 - 370
  • [22] Existence and nonexistence of solutions for a class of Kirchhoff type equation involving fractional p-Laplacian
    Senli Liu
    Haibo Chen
    Jie Yang
    Yu Su
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [23] A Lower/Upper Solutions Result for Generalised Radial p-Laplacian Boundary Value Problems
    Alessandro Fonda
    Natnael Gezahegn Mamo
    Franco Obersnel
    Andrea Sfecci
    Mediterranean Journal of Mathematics, 2023, 20
  • [24] Periodic solutions for p-Laplacian neutral differential equation with multiple delay and variable coefficients
    Zhonghua Bi
    Zhibo Cheng
    Shaowen Yao
    Advances in Difference Equations, 2019
  • [25] Unique iterative positive solutions for a singular p-Laplacian fractional differential equation system with infinite-point boundary conditions
    Limin Guo
    Lishan Liu
    Boundary Value Problems, 2019
  • [26] Multiple positive solutions for nonlinear mixed fractional differential equation with p-Laplacian operator
    Yunhong Li
    Advances in Difference Equations, 2019
  • [27] The existence of solutions for p-Laplacian boundary value problems at resonance on the half-line
    Weihua Jiang
    Yi Zhang
    Jiqing Qiu
    Boundary Value Problems, 2015
  • [28] INFINITELY MANY SOLUTIONS FOR A SECOND ORDER IMPULSIVE DIFFERENTIAL EQUATION WITH p-LAPLACIAN OPERATOR
    Bouabdallah, Mohamed
    Chakrone, Omar
    Chehabi, Mohammed
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2022, 86 : 15 - 30
  • [29] Positive solutions for a second-order p-Laplacian impulsive boundary value problem
    Youzheng Ding
    Donal O’Regan
    Advances in Difference Equations, 2012
  • [30] Existence of positive solutions for p-Laplacian boundary value problems of fractional differential equations
    Farid Chabane
    Maamar Benbachir
    Mohammed Hachama
    Mohammad Esmael Samei
    Boundary Value Problems, 2022