β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-Hill climbing algorithm with probabilistic neural network for classification problems

被引:0
|
作者
Mohammed Alweshah
Aram Al-Daradkeh
Mohammed Azmi Al-Betar
Ammar Almomani
Saleh Oqeili
机构
[1] Al-Balqa Applied University,Prince Abdullah Bin Ghazi Faculty of Information and Communication Technology
[2] Al-Balqa Applied University,Department of Information Technology, Al
关键词
Probabilistic neural network (PNN); -Hill-climbing; Optimization; Classification;
D O I
10.1007/s12652-019-01543-4
中图分类号
学科分类号
摘要
Classification is a crucial step in the data mining field. The probabilistic neural network (PNN) is an efficient method developed for classification problems. The success factor of using PNN for classification problems implies in finding the proper weight during classification process. The main goal of this paper is to improve the performance of PNN by finding the best weight for the PNN using the recent local search approach called β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-hill-climbing (β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-HC) optimizer. This algorithm is an extension version of the traditional hill climbing algorithm in that it uses a stochastic operator to avoid local optima. The proposed approach is evaluated against 11 benchmark datasets ,and the experimental results showed that the proposed β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-HC with PNN approach performed better in terms of classification accuracy than the original PNN, HC-PNN and other six well-established approaches using the same experimented benchmarks.
引用
收藏
页码:3405 / 3416
页数:11
相关论文
共 50 条