Sampling and Cubature on Sparse Grids Based on a B-spline Quasi-Interpolation

被引:0
|
作者
Dinh Dũng
机构
[1] Vietnam National University,Information Technology Institute
[2] Hanoi,undefined
来源
Foundations of Computational Mathematics | 2016年 / 16卷
关键词
Linear sampling algorithms; Optimal sampling recovery ; Cubature formulas; Optimal cubature; Sparse grids; Besov-type spaces of anisotropic smoothness; B-spline quasi-interpolation representations; 41A15; 41A05; 41A25; 41A58; 41A63;
D O I
暂无
中图分类号
学科分类号
摘要
Let Xn={xj}j=1n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n = \{x^j\}_{j=1}^n$$\end{document} be a set of n points in the d-cube Id:=[0,1]d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {I}}^d:=[0,1]^d$$\end{document}, and Φn={φj}j=1n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _n = \{\varphi _j\}_{j =1}^n$$\end{document} a family of n functions on Id\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {I}}^d$$\end{document}. We consider the approximate recovery of functions f on Id\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {I}}}^d$$\end{document} from the sampled values f(x1),…,f(xn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x^1), \ldots , f(x^n)$$\end{document}, by the linear sampling algorithm Ln(Xn,Φn,f):=∑j=1nf(xj)φj.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L_n(X_n,\Phi _n,f) := \sum _{j=1}^n f(x^j)\varphi _j. $$\end{document} The error of sampling recovery is measured in the norm of the space Lq(Id)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_q({\mathbb {I}}^d)$$\end{document}-norm or the energy quasi-norm of the isotropic Sobolev space Wqγ(Id)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^\gamma _q({\mathbb {I}}^d)$$\end{document} for 1<q<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 < q < \infty $$\end{document} and γ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma > 0$$\end{document}. Functions f to be recovered are from the unit ball in Besov-type spaces of an anisotropic smoothness, in particular, spaces Bp,θα,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{\alpha ,\beta }_{p,\theta }$$\end{document} of a “hybrid” of mixed smoothness α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha > 0$$\end{document} and isotropic smoothness β∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in {\mathbb {R}}$$\end{document}, and spaces Bp,θa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^a_{p,\theta }$$\end{document} of a nonuniform mixed smoothness a∈R+d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \in {\mathbb {R}}^d_+$$\end{document}. We constructed asymptotically optimal linear sampling algorithms Ln(Xn∗,Φn∗,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_n(X_n^*,\Phi _n^*,\cdot )$$\end{document} on special sparse grids Xn∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n^*$$\end{document} and a family Φn∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _n^*$$\end{document} of linear combinations of integer or half integer translated dilations of tensor products of B-splines. We computed the asymptotic order of the error of the optimal recovery. This construction is based on B-spline quasi-interpolation representations of functions in Bp,θα,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{\alpha ,\beta }_{p,\theta }$$\end{document} and Bp,θa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^a_{p,\theta }$$\end{document}. As consequences, we obtained the asymptotic order of optimal cubature formulas for numerical integration of functions from the unit ball of these Besov-type spaces.
引用
收藏
页码:1193 / 1240
页数:47
相关论文
共 50 条
  • [41] Multilevel quasi-interpolation on a sparse grid with the Gaussian
    Fuat Usta
    Jeremy Levesley
    Numerical Algorithms, 2018, 77 : 793 - 808
  • [42] The B-spline interpolation in visualization
    Mihajlović, Željka
    Goluban, Alan
    Journal of Computing and Information Technology, 1999, 7 (03): : 245 - 253
  • [43] SHAPE-PRESERVING QUASI-INTERPOLATION AND INTERPOLATION BY BOX SPLINE SURFACES
    CHUI, CK
    DIAMOND, H
    RAPHAEL, L
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1989, 25 (02) : 169 - 198
  • [44] A Study on Spline Quasi-interpolation Based Quadrature Rules for the Isogeometric Galerkin BEM
    Falini, Antonella
    Kanduc, Tadej
    ADVANCED METHODS FOR GEOMETRIC MODELING AND NUMERICAL SIMULATION, 2019, 35 : 99 - 125
  • [45] As-developable-as-possible B-spline surface interpolation to B-spline curves
    Bo, Pengbo
    Zheng, Yujian
    Chu, Dianhui
    Zhang, Caiming
    COMPUTER AIDED GEOMETRIC DESIGN, 2020, 79
  • [46] Interpolation by Nonuniform B-Spline through Uniform B-Spline Filter Banks
    Yang, Yanli
    Ma, De
    Yu, Ting
    2016 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2016, : 375 - 378
  • [47] S21 (δ3) spline functions and quasi-interpolation
    Zhao, Guohui
    Liu, Xiuping
    Ding, Zhiling
    Dalian Ligong Daxue Xuebao/Journal of Dalian University of Technology, 1998, 38 (04): : 504 - 507
  • [48] INVERSED RATIONAL B-SPLINE FOR INTERPOLATION
    TAN, ST
    LEE, CK
    COMPUTERS & STRUCTURES, 1992, 43 (05) : 889 - 895
  • [49] Cubic B-Spline Interpolation and Realization
    Wang, Zhijiang
    Wang, Kaili
    An, Shujiang
    INFORMATION COMPUTING AND APPLICATIONS, PT I, 2011, 243 : 82 - 89
  • [50] INTERPOLATION WITH HYBRID B-SPLINE SURFACES
    WALKER, M
    COMPUTERS & GRAPHICS, 1994, 18 (04) : 525 - 530