Single-cell allele-specific expression analysis reveals dynamic and cell-type-specific regulatory effects

被引:0
|
作者
Guanghao Qi
Benjamin J. Strober
Joshua M. Popp
Rebecca Keener
Hongkai Ji
Alexis Battle
机构
[1] Johns Hopkins University,Department of Biomedical Engineering
[2] University of Washington,Department of Biostatistics
[3] Harvard T.H. Chan School of Public Health,Department of Epidemiology
[4] Johns Hopkins Bloomberg School of Public Health,Department of Biostatistics
[5] Johns Hopkins University,Department of Computer Science
[6] Johns Hopkins University,Department of Genetic Medicine
来源
Nature Communications | / 14卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Differential allele-specific expression (ASE) is a powerful tool to study context-specific cis-regulation of gene expression. Such effects can reflect the interaction between genetic or epigenetic factors and a measured context or condition. Single-cell RNA sequencing (scRNA-seq) allows the measurement of ASE at individual-cell resolution, but there is a lack of statistical methods to analyze such data. We present Differential Allelic Expression using Single-Cell data (DAESC), a powerful method for differential ASE analysis using scRNA-seq from multiple individuals, with statistical behavior confirmed through simulation. DAESC accounts for non-independence between cells from the same individual and incorporates implicit haplotype phasing. Application to data from 105 induced pluripotent stem cell (iPSC) lines identifies 657 genes dynamically regulated during endoderm differentiation, with enrichment for changes in chromatin state. Application to a type-2 diabetes dataset identifies several differentially regulated genes between patients and controls in pancreatic endocrine cells. DAESC is a powerful method for single-cell ASE analysis and can uncover novel insights on gene regulation.
引用
收藏
相关论文
共 50 条
  • [21] Deconvolution at the single-cell level reveals ovarian cell-type-specific transcriptomic changes in PCOS
    Li, Shumin
    Li, Yimeng
    Sun, Yu
    Feng, Gengchen
    Yang, Ziyi
    Yan, Xueqi
    Gao, Xueying
    Jiang, Yonghui
    Du, Yanzhi
    Zhao, Shigang
    Zhao, Han
    Chen, Zi-Jiang
    REPRODUCTIVE BIOLOGY AND ENDOCRINOLOGY, 2024, 22 (01)
  • [22] Deconvolution at the single-cell level reveals ovarian cell-type-specific transcriptomic changes in PCOS
    Shumin Li
    Yimeng Li
    Yu Sun
    Gengchen Feng
    Ziyi Yang
    Xueqi Yan
    Xueying Gao
    Yonghui Jiang
    Yanzhi Du
    Shigang Zhao
    Han Zhao
    Zi-Jiang Chen
    Reproductive Biology and Endocrinology, 22
  • [23] Cell-type-specific analysis of alternative polyadenylation using single-cell transcriptomics data
    Shulman, Eldad David
    Elkon, Ran
    NUCLEIC ACIDS RESEARCH, 2019, 47 (19) : 10027 - 10039
  • [24] Single-cell transcriptome analysis of the Akimba mouse retina reveals cell-type-specific insights into the pathobiology of diabetic retinopathy
    Van Hove, Inge
    De Groef, Lies
    Boeckx, Bram
    Modave, Elodie
    Hu, Tjing-Tjing
    Beets, Karen
    Etienne, Isabelle
    Van Bergen, Tine
    Lambrechts, Diether
    Moons, Lieve
    Feyen, Jean H. M.
    Porcu, Michael
    DIABETOLOGIA, 2020, 63 (10) : 2235 - 2248
  • [25] Single-cell transcriptome analysis of the Akimba mouse retina reveals cell-type-specific insights into the pathobiology of diabetic retinopathy
    Inge Van Hove
    Lies De Groef
    Bram Boeckx
    Elodie Modave
    Tjing-Tjing Hu
    Karen Beets
    Isabelle Etienne
    Tine Van Bergen
    Diether Lambrechts
    Lieve Moons
    Jean H. M. Feyen
    Michaël Porcu
    Diabetologia, 2020, 63 : 2235 - 2248
  • [26] Optimized design of single-cell RNA sequencing experiments for cell-type-specific eQTL analysis
    Mandric, Igor
    Schwarz, Tommer
    Majumdar, Arunabha
    Hou, Kangcheng
    Briscoe, Leah
    Perez, Richard
    Subramaniam, Meena
    Hafemeister, Christoph
    Satija, Rahul
    Ye, Chun Jimmie
    Pasaniuc, Bogdan
    Halperin, Eran
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [27] Optimized design of single-cell RNA sequencing experiments for cell-type-specific eQTL analysis
    Igor Mandric
    Tommer Schwarz
    Arunabha Majumdar
    Kangcheng Hou
    Leah Briscoe
    Richard Perez
    Meena Subramaniam
    Christoph Hafemeister
    Rahul Satija
    Chun Jimmie Ye
    Bogdan Pasaniuc
    Eran Halperin
    Nature Communications, 11
  • [28] SINGLE-CELL ANALYSIS IDENTIFIED CELL-TYPE-SPECIFIC AND CONVERGED PATHWAYS OF AUTISM SPECTRUM DISORDER
    Nomura, Jun
    Takumi, Toru
    INTERNATIONAL JOURNAL OF NEUROPSYCHOPHARMACOLOGY, 2025, 28 : i65 - i66
  • [29] Detecting cell-type-specific allelic expression imbalance by integrative analysis of bulk and single-cell RNA sequencing data
    Fan, Jiaxin
    Wang, Xuran
    Xiao, Rui
    Li, Mingyao
    PLOS GENETICS, 2021, 17 (03):
  • [30] Cell-Type-Specific Gene Regulatory Networks Underlying Murine Neonatal Heart Regeneration at Single-Cell Resolution
    Wang, Zhaoning
    Cui, Miao
    Shah, Akansha M.
    Tan, Wei
    Liu, Ning
    Bassel-Duby, Rhonda
    Olson, Eric N.
    CELL REPORTS, 2020, 33 (10):