PHEBUS on Bepi-Colombo: Post-launch Update and Instrument Performance

被引:0
作者
Eric Quémerais
Jean-Yves Chaufray
Dimitra Koutroumpa
Francois Leblanc
Aurélie Reberac
Benjamin Lustrement
Christophe Montaron
Jean-Francois Mariscal
Nicolas Rouanet
Ichiro Yoshikawa
Go Murakami
Kazuo Yoshioka
Oleg Korablev
Denis Belyaev
Maria G. Pelizzo
Alain Corso
Paola Zuppella
机构
[1] Université Versailles Saint-Quentin,LATMOS
[2] Tokyo University,OVSQ
[3] IKI,National Research Council of Italy
[4] Institute for Photonics and Nanotechnology,undefined
来源
Space Science Reviews | 2020年 / 216卷
关键词
Mercury; UV spectrograph; Exosphere;
D O I
暂无
中图分类号
学科分类号
摘要
The Bepi-Colombo mission was launched in October 2018, headed for Mercury. This mission is a collaboration between Europe and Japan. It is dedicated to the study of Mercury and its environment. It will be inserted into Mercury orbit in December 2025 after a 7-year long cruise. Probing of Hermean Exosphere By Ultraviolet Spectroscopy (PHEBUS) is an ultraviolet Spectrograph and is one of the 11 instruments on-board the Mercury Planetary Orbiter (MPO). It is dedicated to the study of the exosphere of Mercury, its composition, dynamics and variability and its interface with the surface of the planet and the solar wind. The PHEBUS instrument contains four distinct detectors covering the spectral range from 55 nm up to 315 nm and two additional narrow windows at 404 nm and 422 nm. It also has a one-degree of freedom mechanism that allows observations along a cone with an half angle of 80∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$80^{\circ }$\end{document}. This paper follows a detailed presentation of the PHEBUS instrument design that was presented by Chassefière et al. (Planet. Space Sci. 58:201–223, 2010).
引用
收藏
相关论文
共 225 条
  • [1] Benna M.(2015)Variability of helium, neon, and argon in the lunar exosphere as observed by the LADEE NMS instrument Geophys. Res. Lett. 42 3723-3729
  • [2] Mahaffy P.R.(1985)Characteristics of the local interstellar hydrogen determined from PROGNOZ 5 and 6 interplanetary Lyman-alpha line profile measurements with a hydrogen absorption cell Astron. Astrophys. 150 1-20
  • [3] Halekas J.S.(1995)SWAN: a study of solar wind anisotropies on SOHO with Lyman alpha sky mapping Sol. Phys. 162 403-439
  • [4] Elphic R.C.(2017)Observations of minor species Al and Fe in Mercury’s exosphere Icarus 289 227-238
  • [5] Delory G.T.(2000)Discovery of calcium in the Mercury’s atmosphere Nature 404 159,-161
  • [6] Bertaux J.L.(2011)Hollows on Mercury: MESSENGER evidence for geologically recent volatile-related activity Science 333 1856-1859
  • [7] Lallement R.(1974)Mercury’s atmosphere from Mariner 10: preliminary results Science 185 166-169
  • [8] Kurt V.G.(1976)Mariner 10: Mercury atmosphere Geophys. Res. Lett. 3 577-580
  • [9] Mironova E.N.(2012)Modeling MESSENGER observations of calcium in Mercury’s exosphere J. Geophys. Res. 117 51-58
  • [10] Bertaux J.L.(2014)Seasonal variations in Mercury’s dayside calcium exosphere Icarus 238 547-559