共 46 条
[1]
Albarqouni S., Baur C., Achilles F., Belagiannis V., Demirci S., Navab N., AggNet: deep learning from crowds for mitosis detection in breast cancer histology images, IEEE Trans Med Imaging, 35, 5, pp. 1313-1321, (2016)
[2]
Amazon Mechanical Turk
[3]
Bejnordi B.E., Veta M., van Diest P.J., van Ginneken B., Karssemeijer N., Litjens G., van der Laak J.A., Hermsen M., Manson Q., Balkenhol M., Et al., Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer, J Am Med Assoc (JAMA), 318, 22, pp. 2199-2210, (2017)
[4]
Chatzimilioudis G., Konstantinidis A., Laoudias C., Zeinalipour-Yazti D., Crowdsourcing with smartphones, IEEE Internet Comput, 16, 5, pp. 36-44, (2012)
[5]
Cubuk E.D., Zoph B., Mane D., Vasudevan V., Le Q.V., AutoAugment: learning augmentation policies from data. arXiv preprint: arXiv, 1805, (2018)
[6]
de Herrera A.G.S., Foncubierta-Rodriguez A., Markonis D., Schaer R., Muller H., Crowdsourcing for medical image classification, Swiss Med Inform, 30, (2014)
[7]
Dosovitskiy A., Beyer L., Kolesnikov A., Weissenborn D., Zhai X., Unterthiner T., Dehghani M., Minderer M., Heigold G., Gelly S., Uszkoreit J., Houlsby N., An image is worth 16x16 words: transformers for image recognition at scale, Proceedings of the international conference on learning representations (ICLR), (2021)
[8]
Duan X., Tajima K., Improving multiclass classification in crowdsourcing using hierarchical schemes, Proceedings of the world wide web conference, pp. 13-17, (2019)
[9]
Feng S., Zhou H., Dong H., Using deep neural network with small dataset to predict material defects, Mater Des, 162, 15, pp. 300-310, (2019)
[10]
Gal Y., Islam R., Ghahramani Z., Deep bayesian active learning with image data, Proc Int Conf Mach Learn (ICML), 70, pp. 1183-1192, (2017)