Normal Forms for Equivariant Differential Equations

被引:0
作者
Luis Barreira
Claudia Valls
机构
[1] Instituto Superior Técnico,Departamento de Matemática
[2] Universidade de Lisboa,undefined
来源
Journal of Dynamics and Differential Equations | 2022年 / 34卷
关键词
Nonuniform hyperbolicity; Spectrum; Normal forms; Primary: 34C20; 37D99;
D O I
暂无
中图分类号
学科分类号
摘要
We show that if the equation x′=A(t)x+f(t,x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x'=A(t) x + f(t,x)$$\end{document} is equivariant (respectively, reversible), then any normal form as well as the coordinate change taking the original equation to the normal form have equivariance (respectively, reversibility) properties. The proof depends on writing down somewhat explicit coordinate changes based on the block diagonalization of the linear part so that each block corresponds to a connected component of the nonuniform spectrum.
引用
收藏
页码:1371 / 1392
页数:21
相关论文
共 25 条
[1]  
Barreira L(2007)Reversibility and equivariance in center manifolds of nonautonomous dynamics Discrete Contin. Dyn. Syst. 18 677-699
[2]  
Valls C(2019)Normal forms via nonuniform hyperbolicity J. Differential Equations 266 2175-2213
[3]  
Barreira L(1980)Equivariant dynamical systems Trans. Amer. Math. Soc. 259 185-205
[4]  
Valls C(2008)Bifurcations from homoclinic orbits to non-hyperbolic equilibria in reversible lattice differential equations Nonlinearity 21 735-763
[5]  
Field M(2020)Asymptotically stable heteroclinic cycles in discrete-time J. Difference Equ. Appl. 26 1247-1265
[6]  
Georgi M(2019)-equivariant cubic dynamical systems J. Differential Equations 266 1221-1244
[7]  
Gritsans A(2002)Bifurcation analysis on a class of Ergodic Theory Dynam. Systems 22 845-862
[8]  
Guo L(1998)-equivariant cubic switching systems showing eighteen limit cycles Math. Res. Lett. 5 149-163
[9]  
Guysinsky M(2006)The theory of non-stationary normal forms Trans. Amer. Math. Soc. 358 1715-1740
[10]  
Guysinsky M(2006)Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations Ergodic Theory Dynam. Systems 26 1769-1789