Domination and Cut Problems on Chordal Graphs with Bounded Leafage

被引:0
作者
Esther Galby
Dániel Marx
Philipp Schepper
Roohani Sharma
Prafullkumar Tale
机构
[1] Hamburg University of Technology,Max Planck Institute for Informatics
[2] CISPA Helmholtz Center for Information Security,undefined
[3] Saarland Informatics Campus,undefined
[4] Indian Institute of Science Education and Research Pune,undefined
来源
Algorithmica | 2024年 / 86卷
关键词
Chordal graphs; Leafage; FPT algorithms; Dominating set; MultiCut with undeletable terminals; Multiway cut with undeletable terminals;
D O I
暂无
中图分类号
学科分类号
摘要
The leafage of a chordal graph G is the minimum integer ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} such that G can be realized as an intersection graph of subtrees of a tree with ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} leaves. We consider structural parameterization by the leafage of classical domination and cut problems on chordal graphs. Fomin, Golovach, and Raymond [ESA 2018, Algorithmica 2020] proved, among other things, that Dominating Set on chordal graphs admits an algorithm running in time 2O(ℓ2)·nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal {O}(\ell ^2)} \cdot n^{\mathcal {O}(1)}$$\end{document}. We present a conceptually much simpler algorithm that runs in time 2O(ℓ)·nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal {O}(\ell )} \cdot n^{\mathcal {O}(1)}$$\end{document}. We extend our approach to obtain similar results for Connected Dominating Set and Steiner Tree. We then consider the two classical cut problems MultiCut with Undeletable Terminals and Multiway Cut with Undeletable Terminals. We prove that the former is W[1]-hard when parameterized by the leafage and complement this result by presenting a simple nO(ℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\mathcal {O}(\ell )}$$\end{document}-time algorithm. To our surprise, we find that Multiway Cut with Undeletable Terminals on chordal graphs can be solved, in contrast, in nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{{{\mathcal {O}}}(1)}$$\end{document}-time.
引用
收藏
页码:1428 / 1474
页数:46
相关论文
共 98 条
[1]  
Alcón L(2014)On asteroidal sets in chordal graphs Discret. Appl. Math. 164 482-491
[2]  
Barnetson KD(2021)The firebreak problem Networks 77 372-382
[3]  
Burgess AC(2021)Token sliding on split graphs Theory Comput. Syst. 65 662-686
[4]  
Enright JA(2021)More applications of the d-neighbor equivalence: acyclicity and connectivity constraints SIAM J. Discret. Math. 35 1881-1926
[5]  
Howell J(2022)Node multiway cut and subset feedback vertex set on graphs of bounded mim-width Algorithmica 84 1385-1417
[6]  
Pike DA(1984)Dominating sets for split and bipartite graphs Inf. Process. Lett. 19 37-40
[7]  
Ryan B(2018)Multicut is FPT SIAM J. Comput. 47 166-207
[8]  
Belmonte R(2013)Fast dynamic programming for locally checkable vertex subset and vertex partitioning problems Theor. Comput. Sci. 511 66-76
[9]  
Kim EJ(1974)A characterisation of rigid circuit graphs Discret. Math. 9 205-212
[10]  
Lampis M(1998)Efficient algorithms for the domination problems on interval and circular-arc graphs SIAM J. Comput. 27 1671-1694