Scalarizations for approximate quasi efficient solutions in multiobjective optimization problems

被引:4
作者
Yue R.-X. [1 ]
Gao Y. [1 ]
机构
[1] Department of Mathematics, Chongqing Normal University, Chongqing
关键词
Approximate quasi efficeint solutions; Multiobjective optimization problems; Nonlinear scalarizations;
D O I
10.1007/s40305-015-0075-1
中图分类号
学科分类号
摘要
In this paper, by reviewing two standard scalarization techniques, a new necessary and sufficient condition for characterizing (ε (Formula Presented))-quasi (weakly)efficient solutions of multiobjective optimization problems is presented. The proposed procedure for the computation of (ε (Formula Presented))-quasi efficient solutions is given. Note that all of the provided results are established without any convexity assumptions on the problem under consideration. And our results extend several corresponding results in multiobjective optimization. © Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press and Springer-Verlag Berlin Heidelberg 2015.
引用
收藏
页码:69 / 80
页数:11
相关论文
共 38 条
[1]  
Amahroq T., Taa A., On Lagrange Kuhn–Tucker multipliers for multiobjective optimization problems, Optimization, 41, pp. 159-172, (1997)
[2]  
Beldiman M., Panaitescu E., Dogaru L., Approximate quasi efficient solutions in multiobjective optimization, Bull. Math. Soc. Sci. Math. Roum., 99, pp. 109-121, (2008)
[3]  
Bolintineanu S., Vector variational principles: ε-efficiency and scalar stationarity, J. Convex Anal, 8, pp. 71-85, (2001)
[4]  
Chen G.Y., Huang X.X., Hou S.H., General Ekeland’s variational principle for set-valued mappings, J. Optim. Theory Appl., 106, pp. 151-164, (2000)
[5]  
Ciligot-Travain M., On Lagrange Kuhn–Tucker multipliers for Pareto optimization problems, Numer. Funct. Anal. Optim., 15, pp. 689-693, (1994)
[6]  
Durea M., Dutta J., Tammer C., Lagrange multipliers for #x03B5
[7]  
-pareto solutions in vector optimization with nonsolid cones in Banach spaces, J. Optim. Theory Appl, 145, pp. 196-211, (2010)
[8]  
Dutta J., Veterivel V., On approximate minima in vector optimization, Numer. Funct. Anal. Optim., 22, pp. 845-859, (2001)
[9]  
Dutta J., Yalcin Kaya C., A new scalarization and numerical method for constructing weak pareto front of multi-objecitve optimization problems, Optimization, 107, pp. 627-640, (2011)
[10]  
Ehrgott M., Ruzika S., Improved #x03B5