New globally asymptotical synchronization of chaotic systems under sampled-data controller

被引:0
作者
Chao Ge
Zhigang Li
Xiaohong Huang
Caijuan Shi
机构
[1] Hebei United University,Institute of Information Engineering
来源
Nonlinear Dynamics | 2014年 / 78卷
关键词
Chaotic system; synchronization; Sampled-data control; Linear matrix inequalities (LMIs);
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the robust synchronization problem of chaotic Lur’e systems with external disturbance using sampled-data H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} controller. The new method is based on a novel construction of piecewise differentiable Lyapunov–Krasovskii functional (LKF) in the framework of an input delay approach. Compared with existing works, the new LKF makes full use of the information on the nonlinear part of the system and introduces the novel terms, which guarantees the positive of the whole LKF. The output feedback H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} synchronization controller is presented to not only guarantee stable synchronization, but also reduce the effect of external disturbance to an H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} norm constraint. The proposed controller can be obtained by solving the linear matrix inequality problem. The effectiveness of the proposed method is demonstrated by the numerical simulations of Chua’s circuit.
引用
收藏
页码:2409 / 2419
页数:10
相关论文
共 84 条
[1]  
Carroll T(1991)Synchronizing chaotic systems IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 38 45-456
[2]  
Pecora L(1998)Control of chaos using sampled-data feedback control Int. J. Bifurc. Chaos 8 2433-2438
[3]  
Yang T(1997)Impulsive stabilization for control and synchronization of chaotic systems: Theory and application to secure communication IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 44 976-988
[4]  
Chua L(1999)Robust synthesis for master-slave synchronization of Lur’e systems IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 46 841-850
[5]  
Yang T(1997)Absolute stability theory and master-slave synchronization Int. J. Bifurc. Chaos 7 2891-2896
[6]  
Chua L(2001)Master-slave synchronization of Lur’e systems with time-delay Int. J. Bifurc. Chaos 11 1707-1722
[7]  
Suykens J(2010)A revisit to synchronization of Lur’e systems with time-delay feedback control Nonlinear Dyn. 59 297-307
[8]  
Curran P(2012)Discontinuous Lyapunov functional approach to synchronization of time-delay neural networks using sampled-data Nonlinear Dyn. 69 485-496
[9]  
Chua L(2011)Synchronization of neutral complex dynamical networks with coupling time-vaying delays Nonlinear Dyn. 65 349-358
[10]  
Curran P(2011)Secure communication based on chaotic synchronization via interval time-varying delay feedback control Nonlinear Dyn. 63 239-252