missForest with feature selection using binary particle swarm optimization improves the imputation accuracy of continuous data

被引:0
作者
Heejin Jin
Surin Jung
Sungho Won
机构
[1] Seoul National University,Institute of Health and Environment
[2] Seoul National University,Department of Public Health Sciences
[3] RexSoft Corp,undefined
来源
Genes & Genomics | 2022年 / 44卷
关键词
Imputation; Feature selection; Binary particle swarm optimization; missForest;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:651 / 658
页数:7
相关论文
共 87 条
[1]  
Andridge RR(2010)A review of hot deck imputation for survey non-response Int Stat Rev 78 40-64
[2]  
Little RJ(2011)Multiple imputation by chained equations: what is it and how does it work? Int J Methods Psychiatr Res 20 40-49
[3]  
Azur MJ(2008)Improved binary PSO for feature selection using gene expression data Comp Biol Chem 32 29-37
[4]  
Stuart EA(2006)Review: A gentle introduction to imputation of missing values J Clin Epidemiol 59 1087-1091
[5]  
Frangakis C(2020)Accuracy of random-forest-based imputation of missing data in the presence of non-normality, non-linearity, and interaction BMC Med Res Methodol 20 199-e20
[6]  
Leaf PJ(2017)Cohort profile: the Korean genome and epidemiology study (KoGES) consortium Int J Epidemiol 46 e20-77
[7]  
Chuang LY(2014)Data resource profile: the Korea national health and nutrition examination survey (KNHANES) Int J Epidemiol 43 69-1202
[8]  
Chang HW(1988)A test of missing completely at random for multivariate data with missing values J Am Stat Assoc 83 1198-7
[9]  
Tu CJ(2012)K-nearest neighbor in missing data imputation Int J Eng Res Dev 5 5-592
[10]  
Yang CH(1976)Inference and missing data Biometrika 63 581-489