On von Koch Theorem for PSL(2,Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document})

被引:0
|
作者
Muharem Avdispahić
机构
[1] University of Sarajevo,Department of Mathematics
关键词
Prime geodesic theorem; Selberg zeta function; Modular group; 11M36; 11F72; 58J50;
D O I
10.1007/s40840-020-01053-z
中图分类号
学科分类号
摘要
Under a previously studied condition on the argument of the Selberg zeta function on the critical line, we reach the critical exponent 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}$$\end{document} in the error term of the prime geodesic theorem for the modular group PSL(2,Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb {Z}$$\end{document}) outside a set of finite logarithmic measure. We also prove a conditional prime geodesic theorem of Hejhal’s type in this setting without the latter exclusion.
引用
收藏
页码:2139 / 2150
页数:11
相关论文
共 12 条