共 12 条
- [1] Homomorphic Images of Circuits in PSL(2,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PSL}(2,{\mathbb {Z}})$$\end{document}-Space Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40 (3) : 1115 - 1133
- [2] Second moment of the Prime Geodesic Theorem for PSL(2,Z[i])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {PSL}(2, \mathbb {Z}[i])$$\end{document} Mathematische Zeitschrift, 2022, 300 (1) : 791 - 806
- [3] On contraction of vertices of the circuits in coset diagrams for PSL(2,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{PSL}}\varvec{(2}, \pmb {\mathbb {Z}} \varvec{)}$$\end{document} Proceedings - Mathematical Sciences, 2019, 129 (1)
- [4] The equitable basis for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{sl}_2}$$\end{document} Mathematische Zeitschrift, 2011, 268 (1-2) : 535 - 557
- [5] The Teichmüller distance between finite index subgroups of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${PSL_2(\mathbb{Z})}$$\end{document} Geometriae Dedicata, 2008, 136 (1) : 145 - 165
- [6] On Suborbital Graphs for the Group Γ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma ^{3}$$\end{document} Bulletin of the Iranian Mathematical Society, 2020, 46 (6) : 1731 - 1744
- [7] On Suborbital Graphs for the Extended Modular Group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\Gamma}}$$\end{document} Graphs and Combinatorics, 2013, 29 (6) : 1813 - 1825
- [8] On Second Moment of Selberg Zeta-Function for σ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =1$$\end{document} Results in Mathematics, 2021, 76 (4)
- [9] Maps Corresponding to the Subgroups Γ0(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma _0(N)$$\end{document} of the Modular Group Graphs and Combinatorics, 2019, 35 (6) : 1695 - 1705
- [10] Optimal Special Polygons for the Congruence Subgroups Γ0(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _0(p)$$\end{document} and Γ0(pq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _0(pq)$$\end{document}Optimal Special Polygons for the Congruence..N. M. Doan et al. The Journal of Geometric Analysis, 2025, 35 (7)