Transport of Nanoparticle-Stabilized CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}-Foam in Porous Media

被引:0
作者
Valentina Prigiobbe
Andrew J. Worthen
Keith P. Johnston
Chun Huh
Steven L. Bryant
机构
[1] The University of Texas at Austin,Department of Petroleum and Geosystems Engineering
[2] Stevens Institute of Technology,Department of Civil, Environmental, and Ocean Engineering
[3] The University of Texas at Austin,McKetta Department of Chemical Engineering
[4] The University of Calgary,Department of Chemical and Petroleum Engineering
关键词
CO; Foam; Nanoparticles; Transport in porous media; Population balance modeling;
D O I
10.1007/s11242-015-0593-7
中图分类号
学科分类号
摘要
Foam is injected in the subsurface to improve mobility control through the increase in the effective gas viscosity, e.g., in CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}-based enhanced oil recovery processes. As fine-textured foam has higher viscosity, it is envisaged to achieve an optimal foam texture and to maintain it for the entire period of an application. However, mechanisms of foam formation and destruction, which affect texture, are difficult to regulate. In this study, we investigate the synergic effect of nanoparticles and surfactant on the foam texture and the effective gas viscosity (μgf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _g^f$$\end{document}) during transport in a porous medium. Experiments using glass-bead packs were performed injecting CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} and a solution containing either only surfactant or surfactant and nanoparticles. During each experiment, the pressure drop (Δp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta p$$\end{document}) through the porous medium was measured to follow the generation of the foam. A two-phase flow mechanistic model combining the mass conservation law for water and CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} and the population balance equation of the lamellae was implemented to analyze the experiments and predict foam transport under the investigated conditions. The constitutive equations for foam generation and destruction were based on the dominant role of pressure gradient on lamella division and of capillary pressure on bubble coalescence, and their parameters were estimated using pressure drop measurements. Both equations were formulated for a surfactant-stabilized foam, and it was the aim of this work to understand their validity also for the case of a nanoparticle-stabilized foam. The experiments compare well with the theory showing that a foam stabilized with nanoparticles and surfactant can be modeled as a surfactant-stabilized foam. Overall, Δp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta p$$\end{document} increases smoothly while the foam forms and, upon breakthrough, it stabilizes around a constant value while approaching steady state. During this phase, oscillations occur, particularly when high-quality foam is generated as the system is close to its critical conditions of capillary pressure and water saturation. When steady state is reached, the effective gas viscosity varies with fg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_g$$\end{document} and solution composition and significantly increases when surfactant and nanoparticles are added. The maximum value of μgf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _g^f$$\end{document} is 0.110 Pa s for fg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_g$$\end{document} = 0.75, which is almost twofold of the maximum value attained when only a surfactant is used, corresponding to 0.067 Pa s at fg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_g$$\end{document} = 0.4. This suggests that when nanoparticles and surfactant are employed, they can favor the formation of a strong high-quality CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}-foam.
引用
收藏
页码:265 / 285
页数:20
相关论文
共 133 条
[21]  
Clint JH(1988)A model for foam generation in homogeneous porous media SPE Reserv. Eng. 3 919-926
[22]  
Nees D(1995)Interfacial criteria for stabilization of liquid foams by solid particles Chem. Eng. Sci. 50 3783-3799
[23]  
Azmin M(1994)Effects of capillary pressure on coalescence and phase mobilities in foams flowing through porous media ACS Adv. Chem. Ser. 242 115-164
[24]  
Mohamedi G(2014)A mechanistic population balance model for transient and steady-state foam flow in Boise sandstone Transp. Porous Media 101 373-400
[25]  
Edirisinghe M(1941)Fundamentals of foam transport in porous media Trans. Am. Inst. Min. Metall. Eng. 142 152-169
[26]  
Stride E(2003)Three-phase fractional flow analysis for foam-assisted non-aqueous phase liquid NAPL remediation Eng. Geol. 70 269-279
[27]  
Binks BP(2004)Capillary behavior in porous solids Curr. Opin. Colloid Interface Sci. 9 314-320
[28]  
Desforges A(1982)Remediation with surfactant foam of PCP-contaminated soil Science 224 563-569
[29]  
Duff DG(2007)Foam stability: proteins and nanoparticles Adv. Water Resour. 30 2339-2353
[30]  
Binks BP(1903)Use of carbon dioxide in enhanced oil recovery Proc. R. Soc. Lond. 72 156-164