On the reconstruction of a convolution perturbation of the Sturm-Liouville operator from the spectrum

被引:0
作者
S. A. Buterin
机构
[1] Saratov State University,
来源
Differential Equations | 2010年 / 46卷
关键词
Inverse Problem; Convolution Operator; Liouville Operator; Nonlinear Integral Equation; Liouville Problem;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the sum of the Sturm-Liouville operator and a convolution operator. We study the inverse problem of reconstructing the convolution operator from the spectrum. This problem is reduced to a nonlinear integral equation with a singularity. We prove the global solvability of this nonlinear equation, which permits one to show that the asymptotics of the spectrum is a necessary and sufficient condition for the solvability of the inverse problem. The proof is constructive.
引用
收藏
页码:150 / 154
页数:4
相关论文
共 8 条
[1]  
Borg G.(1946)Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe Acta Math. 78 1-96
[2]  
Malamud M.M.(1993)Similar Volterra Operators and Related Aspects of the Theory of Fractional Differential Equations Tr. Mosk. Mat. Obs. 55 73-148
[3]  
Eremin M.S.(1988)Inverse Problem for Second-Order Integro-Differential Equation with a Singularity Differ. Uravn. 24 350-351
[4]  
Yurko V.A.(1991)Inverse Problem for Integro-Differential Operators Mat. Zametki 50 134-144
[5]  
Kuryshova Yu.V.(2007)The Inverse Spectral Problem for Integro-Differential Operators Mat. Zametki 81 855-866
[6]  
Buterin S.A.(2007)On an Inverse Spectral Problem for a Convolution Integro-Differential Operator Results Math. 50 173-181
[7]  
Buterin S.A.(2006)The Inverse Spectral Problem of the Reconstruction of a Convolution Operator Perturbed by a One-Dimensional Operator Mat. Zametki 80 668-682
[8]  
Buterin S.A.(2006)The Inverse Problem of Recovering the Volterra Convolution Operator from the Incomplete Spectrum of Its Rank-One Perturbation Inverse Problems 22 2223-2236