Triangular Cesàro summability of two dimensional Fourier series

被引:0
|
作者
Ferenc Weisz
机构
[1] Eötvös L. University,Department of Numerical Analysis
来源
Acta Mathematica Hungarica | 2011年 / 132卷
关键词
Hardy space; -atom; interpolation; Fourier series; triangular summation; Cesàro summability; 42B08; 42A38; 42B30;
D O I
暂无
中图分类号
学科分类号
摘要
It is proved that the maximal operator of the triangular Cesàro means of a two-dimensional Fourier series is bounded from the periodic Hardy space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $H_{p}(\mathbb{T}^{2})$ \end{document} to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $L_{p}(\mathbb{T}^{2})$ \end{document} for all 2/(2+α)<p≦∞ and, consequently, is of weak type (1,1). As a consequence we obtain that the triangular Cesàro means of a function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $f \in L_{1}(\mathbb{T}^{2})$ \end{document} converge a.e. to f.
引用
收藏
页码:27 / 41
页数:14
相关论文
共 50 条