An efficient heuristic method for active feature acquisition and its application to protein-protein interaction prediction

被引:8
作者
Mohamed Thahir
Tarun Sharma
Madhavi K Ganapathiraju
机构
[1] School of Medicine,Department of Biomedical Informatics
[2] University of Pittsburgh,Intelligent Systems Program
[3] School of Arts and Sciences,Language Technologies Institute
[4] University of Pittsburgh,undefined
[5] Carnegie Mellon University,undefined
关键词
Random Forest; Expected Utility; Protein Pair; Gene Expression Experiment; Active Learning Method;
D O I
10.1186/1753-6561-6-S7-S2
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 51 条
[1]  
Venkatesan K(2009)An empirical framework for binary interactome mapping Nat Methods 6 83-90
[2]  
Rual JF(2007)A mixture of feature experts approach for protein-protein interaction prediction BMC bioinformatics 8 S6-50
[3]  
Vazquez A(2007)Probabilistic prediction and ranking of human protein-protein interactions BMC Bioinformatics 8 239-5255
[4]  
Stelzl U(2002)Large scale statistical prediction of protein-protein interaction by potentially interacting domain (PID) pair Genome Inform 13 42-32
[5]  
Lemmens I(2009)Systematic prediction of human membrane receptor interactions Proteomics 9 5243-500
[6]  
Hirozane-Kishikawa T(2001)Random Forests Machine Learning 25 5-901
[7]  
Hao T(2006)Evaluation of different biological data and computational classification methods for use in protein interaction prediction Proteins 63 490-254
[8]  
Zenkner M(2009)Implementation of genepattern within the stanford microarray database Nucleic Acids Res 37 D898-1027
[9]  
Xin X(2003)Interdom: a database of putative interacting protein domains for validating predicted protein interactions and complexes Nucleic Acids Res 31 251-undefined
[10]  
Goh KI(1993)Multi-interval discretization of continuous-valued attributes for classification learning IJCAI 2 1022-undefined