We give an elementary proof of the following result. Let C be an abelian and irreducible subgroup of the symplectic group Sp(2m, p). Then C is cyclic and embeds in the (multiplicative) subgroup of order pm+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p^m + 1$$\end{document} of the field of order p2m\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p^{2m}$$\end{document}. The proof yields, in fact, a similar result for nonsingular bilinear forms more generally.