Abelian groups acting irreducibly and bilinear forms

被引:0
作者
Alexandre Turull
机构
[1] University of Florida,Department of Mathematics
来源
Archiv der Mathematik | 2023年 / 121卷
关键词
Finite groups; Representations; Symplectic group; Bilinear forms; 20C05;
D O I
暂无
中图分类号
学科分类号
摘要
We give an elementary proof of the following result. Let C be an abelian and irreducible subgroup of the symplectic group Sp(2m, p). Then C is cyclic and embeds in the (multiplicative) subgroup of order pm+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^m + 1$$\end{document} of the field of order p2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{2m}$$\end{document}. The proof yields, in fact, a similar result for nonsingular bilinear forms more generally.
引用
收藏
页码:351 / 354
页数:3
相关论文
共 4 条
  • [1] Bayer-Fluckiger E(2015)Isometries of quadratic spaces J. Eur. Math. Soc. (JEMS) 17 1629-1656
  • [2] Nebe G(2000)Invariants of orthogonal Exp. Math. 9 623-630
  • [3] Nebe G(2022)-modules from the character table Arch. Math. (Basel) 119 19-26
  • [4] Turull A(1983)Orthogonal determinants of characters Math. Z. 183 47-73