A semidefinite programming method for integer convex quadratic minimization

被引:0
|
作者
Jaehyun Park
Stephen Boyd
机构
[1] Stanford University,
[2] Stanford University,undefined
来源
Optimization Letters | 2018年 / 12卷
关键词
Convex optimization; Integer quadratic programming; Mixed-integer programming; Semidefinite relaxation; Branch-and-bound;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the NP-hard problem of minimizing a convex quadratic function over the integer lattice Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Z}}^n$$\end{document}. We present a simple semidefinite programming (SDP) relaxation for obtaining a nontrivial lower bound on the optimal value of the problem. By interpreting the solution to the SDP relaxation probabilistically, we obtain a randomized algorithm for finding good suboptimal solutions, and thus an upper bound on the optimal value. The effectiveness of the method is shown for numerical problem instances of various sizes.
引用
收藏
页码:499 / 518
页数:19
相关论文
共 50 条
  • [31] New bounds on the unconstrained quadratic integer programming problem
    G. D. Halikias
    I. M. Jaimoukha
    U. Malik
    S. K. Gungah
    Journal of Global Optimization, 2007, 39 : 543 - 554
  • [32] Reducing the number of variables in integer quadratic programming problem
    Zhou MinJin
    Chen Wei
    APPLIED MATHEMATICAL MODELLING, 2010, 34 (02) : 424 - 436
  • [33] New bounds on the unconstrained quadratic integer programming problem
    Halikias, G. D.
    Jaimoukha, I. M.
    Malik, U.
    Gungah, S. K.
    JOURNAL OF GLOBAL OPTIMIZATION, 2007, 39 (04) : 543 - 554
  • [34] Mixed-Integer Quadratic Constrained Programming versus Quadratic Programming Methods for Distribution Network Reconfiguration
    Tami, Y.
    Sebaa, K.
    Lahdeb, M.
    Nouri, H.
    2019 INTERNATIONAL CONFERENCE ON ADVANCED ELECTRICAL ENGINEERING (ICAEE), 2019,
  • [35] Solving quadratic assignment problems using convex quadratic programming relaxations
    Brixius, NW
    Anstreicher, KM
    OPTIMIZATION METHODS & SOFTWARE, 2001, 16 (1-4): : 49 - 68
  • [36] A Note on Convex Reformulation Schemes for Mixed Integer Quadratic Programs
    Eric Newby
    M. M. Ali
    Journal of Optimization Theory and Applications, 2014, 160 : 457 - 469
  • [37] Improved semidefinite programming bounds for quadratic assignment problems with suitable symmetry
    Etienne de Klerk
    Renata Sotirov
    Mathematical Programming, 2012, 133 : 75 - 91
  • [38] A new variable reduction technique for convex integer quadratic programs
    Hua, Zhongsheng
    Zhang, Bin
    Xu, Xiaoyan
    APPLIED MATHEMATICAL MODELLING, 2008, 32 (02) : 224 - 231
  • [39] A decision space algorithm for multiobjective convex quadratic integer optimization
    De Santis, Marianna
    Eichfelder, Gabriele
    COMPUTERS & OPERATIONS RESEARCH, 2021, 134
  • [40] Linear, Quadratic, and Semidefinite Programming Massive MIMO Detectors: Reliability and Complexity
    Fukuda, Rafael Masashi
    Abrao, Taufik
    IEEE ACCESS, 2019, 7 : 29506 - 29519