A semidefinite programming method for integer convex quadratic minimization

被引:0
|
作者
Jaehyun Park
Stephen Boyd
机构
[1] Stanford University,
[2] Stanford University,undefined
来源
Optimization Letters | 2018年 / 12卷
关键词
Convex optimization; Integer quadratic programming; Mixed-integer programming; Semidefinite relaxation; Branch-and-bound;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the NP-hard problem of minimizing a convex quadratic function over the integer lattice Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Z}}^n$$\end{document}. We present a simple semidefinite programming (SDP) relaxation for obtaining a nontrivial lower bound on the optimal value of the problem. By interpreting the solution to the SDP relaxation probabilistically, we obtain a randomized algorithm for finding good suboptimal solutions, and thus an upper bound on the optimal value. The effectiveness of the method is shown for numerical problem instances of various sizes.
引用
收藏
页码:499 / 518
页数:19
相关论文
共 50 条
  • [11] PROBABILISTIC ANALYSIS OF SEMIDEFINITE RELAXATION FOR BINARY QUADRATIC MINIMIZATION
    Kisialiou, Mikalai
    Luo, Zhi-Quan
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) : 1906 - 1922
  • [12] Multiobjective duality for convex semidefinite programming problems
    Wanka, G
    Bot, RI
    Grad, SM
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2003, 22 (03): : 711 - 728
  • [13] Proximity in concave integer quadratic programming
    Del Pia, Alberto
    Ma, Mingchen
    MATHEMATICAL PROGRAMMING, 2022, 194 (1-2) : 871 - 900
  • [14] Proximity in concave integer quadratic programming
    Alberto Del Pia
    Mingchen Ma
    Mathematical Programming, 2022, 194 : 871 - 900
  • [15] SUBDETERMINANTS AND CONCAVE INTEGER QUADRATIC PROGRAMMING
    Del Pia, Alberto
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) : 3154 - 3173
  • [16] Bend minimization in planar orthogonal drawings using integer programming
    Mutzel, Petra
    Weiskircher, Rene
    SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (03) : 665 - 687
  • [17] Mixed linear and semidefinite programming for combinatorial and quadratic optimization
    Benson, SJ
    Ye, YY
    Zhang, X
    OPTIMIZATION METHODS & SOFTWARE, 1999, 11-2 (1-4): : 515 - 544
  • [18] A new branch and bound algorithm for integer quadratic programming problems
    Ma, Xiaohua
    Gao, Yuelin
    Liu, Xia
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03): : 1153 - 1164
  • [19] A provable better Branch and Bound method for a nonconvex integer quadratic programming problem
    Zhu, WX
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2005, 70 (01) : 107 - 117
  • [20] ON THE REGULARIZATION OF VECTOR INTEGER QUADRATIC PROGRAMMING PROBLEMS
    Emeliehev, V. A.
    Gurevskii, E. E.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2009, 45 (02) : 274 - 280