A semidefinite programming method for integer convex quadratic minimization

被引:0
|
作者
Jaehyun Park
Stephen Boyd
机构
[1] Stanford University,
[2] Stanford University,undefined
来源
Optimization Letters | 2018年 / 12卷
关键词
Convex optimization; Integer quadratic programming; Mixed-integer programming; Semidefinite relaxation; Branch-and-bound;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the NP-hard problem of minimizing a convex quadratic function over the integer lattice Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Z}}^n$$\end{document}. We present a simple semidefinite programming (SDP) relaxation for obtaining a nontrivial lower bound on the optimal value of the problem. By interpreting the solution to the SDP relaxation probabilistically, we obtain a randomized algorithm for finding good suboptimal solutions, and thus an upper bound on the optimal value. The effectiveness of the method is shown for numerical problem instances of various sizes.
引用
收藏
页码:499 / 518
页数:19
相关论文
共 50 条
  • [1] A semidefinite programming method for integer convex quadratic minimization
    Park, Jaehyun
    Boyd, Stephen
    OPTIMIZATION LETTERS, 2018, 12 (03) : 499 - 518
  • [2] Convex quadratic and semidefinite programming relaxations in scheduling
    Skutella, M
    JOURNAL OF THE ACM, 2001, 48 (02) : 206 - 242
  • [3] ELLIPSOID BOUNDS FOR CONVEX QUADRATIC INTEGER PROGRAMMING
    Buchheim, Christoph
    Huebner, Ruth
    Schoebel, Anita
    SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (02) : 741 - 769
  • [4] On the gap between the quadratic integer programming problem and its semidefinite relaxation
    U. Malik
    I.M. Jaimoukha
    G.D. Halikias
    S.K. Gungah
    Mathematical Programming, 2006, 107 : 505 - 515
  • [5] On the gap between the quadratic integer programming problem and its semidefinite relaxation
    Malik, U
    Jaimoukha, IM
    Halikias, GD
    Gungah, SK
    MATHEMATICAL PROGRAMMING, 2006, 107 (03) : 505 - 515
  • [6] A DC programming approach for mixed integer convex quadratic programs
    Niu, Yi-Shuai
    Tao Pham Dinh
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND SYSTEMS MANAGEMENT (IESM'2011): INNOVATIVE APPROACHES AND TECHNOLOGIES FOR NETWORKED MANUFACTURING ENTERPRISES MANAGEMENT, 2011, : 222 - 231
  • [7] Positive semidefinite penalty method for quadratically constrained quadratic programming
    Gu, Ran
    Du, Qiang
    Yuan, Ya-xiang
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (04) : 2488 - 2515
  • [8] On semidefinite descriptions for convex hulls of quadratic programs
    Wang, Alex L.
    Kilinc-Karzan, Fatma
    OPERATIONS RESEARCH LETTERS, 2024, 54
  • [9] A new branch-and-cut algorithm for non-convex quadratic programming via alternative direction method and semidefinite relaxation
    Luo, Hezhi
    Chen, Sikai
    Wu, Huixian
    NUMERICAL ALGORITHMS, 2021, 88 (02) : 993 - 1024
  • [10] A new branch-and-cut algorithm for non-convex quadratic programming via alternative direction method and semidefinite relaxation
    Hezhi Luo
    Sikai Chen
    Huixian Wu
    Numerical Algorithms, 2021, 88 : 993 - 1024