A Vanishing Theorem for the Tangential de Rham Cohomology of a Foliation with Amenable Fundamental Groupoid

被引:0
|
作者
Kevin Corlette
Luis Hernández Lamoneda
Alessandra Iozzi
机构
[1] University of Chicago,Department of Mathematics
来源
Geometriae Dedicata | 2004年 / 103卷
关键词
amenable; cohomology; foliation; fundamental groupoid; nonpositive curvature; rank;
D O I
暂无
中图分类号
学科分类号
摘要
For a space X carrying a foliation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathcal{F}}$$ \end{document}, the authors study the cohomology of the complex of differential forms which are smooth along the leaves and transversally locally L∞. It is shown that, if the leaves are nonpositively curved manifolds of rank at least r in a suitable uniform sense and the fundamental groupoid of the foliation is amenable, then the cohomology vanishes in degrees above r. This result is inspired by some of Gromov's results on bounded cohomology.
引用
收藏
页码:205 / 223
页数:18
相关论文
共 1 条