Fatigue Crack Growth Behaviour in Friction Stir Welded Aluminium–Lithium Alloy Subjected to Biaxial Loads

被引:1
|
作者
V. Richter-Trummer
X. Zhang
P. E. Irving
M. Pacchione
M. Beltrão
J. F. dos Santos
机构
[1] DEMEC,Department of Aerospace Engineering
[2] FEUP—Faculdade de Engenharia da Universidade do Porto,undefined
[3] Cranfield University,undefined
[4] OMTS,undefined
[5] Airbus Operations GmbH,undefined
[6] Helmholtz-Zentrum Geesthacht,undefined
[7] Institute of Materials Research,undefined
[8] Materials mechanics,undefined
[9] Solid-State Joining Processes,undefined
来源
Experimental Techniques | 2016年 / 40卷
关键词
AA2198; Crack Path; FSW;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, biaxial load fatigue crack growth tests are reported. Specimens were made of an advanced aluminium–lithium alloy AA2198-T8 joined by the friction stir welding process, capable of producing advanced integral metallic structures that can offer significant cost and weight savings over the current joining methods. Two material rolling directions are considered in relation to the welding and crack growth direction. Welding-induced initial distortion was measured before the experiment for better result interpretation. Test specimens are representative of two different weld orientations, that is longitudinal weld parallel to the material rolling direction and circumferential weld perpendicular to the material rolling direction for investigating the inherent material anisotropy of aluminium–lithium alloys. In all tests, the fatigue crack was initiated in the thermo-mechanical process zone of the weld and propagated parallel to the weld joint line. It is shown that the rolling direction of the selected aluminium alloy strongly affects the crack growth path. The specimens welded orthogonally to the rolling direction exhibit a shorter fatigue crack growth life than the specimens welded parallel to the rolling direction.
引用
收藏
页码:921 / 935
页数:14
相关论文
共 50 条
  • [1] Fatigue Crack Growth Behaviour in Friction Stir Welded Aluminium-Lithium Alloy Subjected to Biaxial Loads
    Richter-Trummer, V.
    Zhang, X.
    Irving, P. E.
    Pacchione, M.
    Beltrao, M.
    dos Santos, J. F.
    EXPERIMENTAL TECHNIQUES, 2016, 40 (03) : 921 - 935
  • [2] Fatigue crack growth behaviour of friction stir welded AA7075-T651 aluminium alloy joints
    Sivaraj, P.
    Kanagarajan, D.
    Balasubramanian, V.
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2014, 24 (08) : 2459 - 2467
  • [3] Fatigue and fracture behaviour of friction stir welded aluminium-lithium 2195
    Moreira, P. M. G. P.
    de Jesus, A. M. P.
    de Figueiredo, M. A. V.
    Windisch, M.
    Sinnema, G.
    de Castro, P. M. S. T.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2012, 60 (01) : 1 - 9
  • [4] Fatigue Crack Growth of Friction-Stir-Welded Aluminum Alloy
    Okada, Takao
    Machida, Shigeru
    Nakamura, Toshiya
    Tanaka, Hirokazu
    Kuwayama, Kazuya
    Asakawa, Motoo
    JOURNAL OF AIRCRAFT, 2017, 54 (02): : 737 - 746
  • [5] The Fatigue Behaviour of Friction Stir Welded Aluminium Joints
    M. Gutensohn
    G. Wagner
    F. Walther
    D. Eifler
    Welding in the World, 2008, 52 (9-10) : 69 - 74
  • [6] CRACK RESISTANCE OF ALUMINIUM ALLOY FRICTION STIR WELDED JOINT
    Dascau, Horia
    Kirin, Snezana
    Sedmak, Aleksandar
    Eramah, Abdsalam
    Tadic, Srdan
    STRUCTURAL INTEGRITY AND LIFE-INTEGRITET I VEK KONSTRUKCIJA, 2015, 15 (01): : 51 - 54
  • [7] Fracture and fatigue crack growth behaviour of PMMC friction stir welded butt joints
    Pirondi, A.
    Collini, L.
    Fersini, D.
    ENGINEERING FRACTURE MECHANICS, 2008, 75 (15) : 4333 - 4342
  • [8] ANALYSIS OF FATIGUE CRACK GROWTH IN FRICTION STIR WELDED JOINTS OF 2024 AL ALLOY
    Zadeh, M.
    Ali, Aidy
    Golestaneh, A. F.
    Sahari, B. B.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 3, 2010, : 703 - 710
  • [9] Fatigue crack growth behavior of 7050 aluminum alloy friction stir welded joint
    Jin Y.
    Zhang L.
    Zhang L.
    Wang X.
    Hanjie Xuebao/Transactions of the China Welding Institution, 2020, 41 (10): : 11 - 16
  • [10] Fatigue behaviour of Friction Stir Welded aluminium bridge deck segment
    Vigh, Laszlo Gergely
    Okura, Ichiro
    MATERIALS & DESIGN, 2013, 44 : 119 - 127