Inexact Proximal Point Algorithms and Descent Methods in Optimization

被引:0
作者
Carlos Humes
Paulo J. S. Silva
机构
[1] University of São Paulo,Department of Computer Science
来源
Optimization and Engineering | 2005年 / 6卷
关键词
proximal methods; convex programming; monotone operators;
D O I
暂无
中图分类号
学科分类号
摘要
Proximal point methods have been used by the optimization community to analyze different algorithms like multiplier methods for constrained optimization, and bundle methods for nonsmooth problems. This paper aims to be an introduction to the theory of proximal algorithms borrowing ideas from descent methods for unconstrained optimization. This new viewpoint allows us to present a simple and natural convergence proof. We also improve slightly the results from Solodov and Svaiter (1999).
引用
收藏
页码:257 / 271
页数:14
相关论文
共 15 条
[1]  
Auslender A.(1987)Numerical methods for nondifferentiable convex optimization Mathematical Programming Studies 30 102-126
[2]  
Birge J. R.(1998)A general approach to convergence properties of some methods for nonsmooth convex optimization Applied Mathematics and Optimization 38 141-158
[3]  
Qi L.(1992)On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators Mathematical Programming 55 293-318
[4]  
Wei Z.(2000)Strict convex regularizations, proximal point and augmented Lagrangians RAIRO Operations Research 34 283-303
[5]  
Eckstein J.(1999)Augmented Lagrangian methods and proximal point methods for convex optimization Investigación Operativa 8 11-49
[6]  
Bertsekas D.(1970)Regularisation d’inéquations variationelles par approximations successives Revue Française Informatique Recherche Opérationnelle 4 154-158
[7]  
Humes C.(1972)Détermination approchée d’un point fixe d’une application pseudo-contractante Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Séries A et B 274 A163-A165
[8]  
Silva P. J. S.(1976a)Monotone operators and the proximal point algorithm SIAM Journal on Control and Optimization 14 887-898
[9]  
Iusem B A. N.(1976b)Augmented Lagrangians and applications of the proximal point algorithm in convex programming Mathematics of Operations Research 1 97-116
[10]  
Martinet B.(1999)A Hybrid projection-proximal point algorithm Journal of Convex Analysis 6 59-70