Inexact Proximal Point Algorithms and Descent Methods in Optimization

被引:0
|
作者
Carlos Humes
Paulo J. S. Silva
机构
[1] University of São Paulo,Department of Computer Science
来源
Optimization and Engineering | 2005年 / 6卷
关键词
proximal methods; convex programming; monotone operators;
D O I
暂无
中图分类号
学科分类号
摘要
Proximal point methods have been used by the optimization community to analyze different algorithms like multiplier methods for constrained optimization, and bundle methods for nonsmooth problems. This paper aims to be an introduction to the theory of proximal algorithms borrowing ideas from descent methods for unconstrained optimization. This new viewpoint allows us to present a simple and natural convergence proof. We also improve slightly the results from Solodov and Svaiter (1999).
引用
收藏
页码:257 / 271
页数:14
相关论文
共 50 条
  • [1] Inexact proximal point algorithms and descent methods in optimization
    Humes, C
    Silva, PJS
    OPTIMIZATION AND ENGINEERING, 2005, 6 (02) : 257 - 271
  • [2] Inexact and Accelerated Proximal Point Algorithms
    Salzo, Saverio
    Villa, Silvia
    JOURNAL OF CONVEX ANALYSIS, 2012, 19 (04) : 1167 - 1192
  • [3] Inexact proximal ε-subgradient methods for composite convex optimization problems
    Millan, R. Diaz
    Machado, M. Penton
    JOURNAL OF GLOBAL OPTIMIZATION, 2019, 75 (04) : 1029 - 1060
  • [4] Some inexact hybrid proximal augmented Lagrangian algorithms
    Humes, C
    Silva, PJS
    Svaiter, BF
    NUMERICAL ALGORITHMS, 2004, 35 (2-4) : 175 - 184
  • [5] Some Inexact Hybrid Proximal Augmented Lagrangian Algorithms
    Carlos Humes
    Paulo J.S. Silva
    Benar F. Svaiter
    Numerical Algorithms, 2004, 35 : 175 - 184
  • [6] Steepest-descent proximal point algorithms for a class of variational inequalities in Banach spaces
    Buong, Nguyen
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (8-9) : 1191 - 1207
  • [7] Inexact Halpern-type proximal point algorithm
    Boikanyo, O. A.
    Morosanu, G.
    JOURNAL OF GLOBAL OPTIMIZATION, 2011, 51 (01) : 11 - 26
  • [8] PROXIMAL POINT ALGORITHMS FOR NONCONVEX-NONCONCAVE MINIMAX OPTIMIZATION PROBLEMS
    Li, Xiao-bing
    Jiang, Yuan-xin
    Yao, Bin
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (08) : 2007 - 2021
  • [9] The Developments of Proximal Point Algorithms
    Cai, Xing-Ju
    Guo, Ke
    Jiang, Fan
    Wang, Kai
    Wu, Zhong-Ming
    Han, De-Ren
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2022, 10 (02) : 197 - 239
  • [10] Fast proximal algorithms for nonsmooth convex optimization
    Ouorou, Adam
    OPERATIONS RESEARCH LETTERS, 2020, 48 (06) : 777 - 783