A note on the simultaneous 3-divisibility of class numbers of tuples of real quadratic fields

被引:0
作者
Mohit Mishra
Anupam Saikia
机构
[1] Indian Statistical Institute,Stat
[2] Indian Institute of Technology,Math Unit
来源
The Ramanujan Journal | 2024年 / 64卷
关键词
Quadratic number fields; Class groups; Class numbers; Primary: 11R11; Secondary: 11R29;
D O I
暂无
中图分类号
学科分类号
摘要
Let r be a positive integer, and let k1,k2,⋯,kr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_1, k_2, \cdots ,k_r$$\end{document} be integers such that ki≡±1(mod9)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_i \equiv \pm 1 \pmod 9$$\end{document} for all 1≤i≤r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le i \le r$$\end{document}. In this article, we prove the existence of infinitely many positive integers D such that the class numbers of the real quadratic fields Q(3D),Q(3(D-1)),Q(3(D-k12)),…,Q(3(D-kr2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb {Q}}(\sqrt{3D}), ~ {\mathbb {Q}}(\sqrt{3(D -1)}), ~ {\mathbb {Q}}(\sqrt{3(D -k_1^2)}), \ldots , ~ {\mathbb {Q}}(\sqrt{3(D-k_r^2)})$$\end{document} are simultaneously divisible by 3. This result gives an affirmative answer to a weaker version of a conjecture of Iizuka (J Number Theory 184:122–127, 2018).
引用
收藏
页码:465 / 474
页数:9
相关论文
共 29 条
[1]  
Ankeny N(1955)On the divisibility of the class numbers of quadratic fields Pac. J. Math. 5 321-324
[2]  
Chowla S(1966)Linear forms in the logarithms of algebraic numbers I, II, III Mathematika 13 204-216
[3]  
Baker A(2023)Lehmer sequence approach to the divisibility of class numbers of imaginary quadratic fields Ramanujan J. 60 913-923
[4]  
Chakraborty K(2021)On the simultaneous Acta Arith. 197 105-110
[5]  
Hoque A(2022)-divisibility of class numbers of triples of imaginary quadratic fields J. Number Theory 238 464-473
[6]  
Chattopadhyay J(2018)On a conjecture of Iizuka J. Number Theory 184 122-127
[7]  
Muthukrishnan S(2016)On the class number divisibility of pairs of imaginary quadratic fields J. Math. Soc. Jpn. 68 899-915
[8]  
Hoque A(2021)On the class number divisibility of pairs of quadratic fields obtained from points on elliptic curves Tokyo J. Math. 44 33-47
[9]  
Iizuka Y(2000)An application of the arithmetic of elliptic curves to the class number problem for quadratic fields J. Number Theory 80 209-217
[10]  
Iizuka Y(2017)Parametrization of the quadratic fields whose class numbers are divisible by three Int. J. Number Theory 13 253-260