Fast interval matrix multiplication

被引:0
|
作者
Siegfried M. Rump
机构
[1] Hamburg University of Technology,Institute for Reliable Computing
[2] Waseda University,Faculty of Science and Engineering
来源
Numerical Algorithms | 2012年 / 61卷
关键词
Interval arithmetic; Overestimation; Matrix multiplication; Infimum-supremum representation; Optimal midpoint-radius representation; Interval matrix product; Rounding mode; BLAS; Unit in the first place (ufp); Error analysis; 15-04; 65G99; 65-04;
D O I
暂无
中图分类号
学科分类号
摘要
Several methods for the multiplication of point and/or interval matrices with interval result are discussed. Some are based on new priori estimates of the error of floating-point matrix products. The amount of overestimation including all rounding errors is analyzed. In particular, algorithms for conversion of infimum-supremum to midpoint-radius representation are discussed and analyzed, one of which is proved to be optimal. All methods are much faster than the classical method because almost no switch of the rounding mode is necessary, and because our methods are based on highly optimized BLAS3 routines. We discuss several possibilities to trade overestimation against computational effort. Numerical examples focussing in particular on applications using interval matrix multiplications are presented.
引用
收藏
页码:1 / 34
页数:33
相关论文
共 50 条
  • [1] Fast interval matrix multiplication
    Rump, Siegfried M.
    NUMERICAL ALGORITHMS, 2012, 61 (01) : 1 - 34
  • [2] Fast algorithms for floating-point interval matrix multiplication
    Ozaki, Katsuhisa
    Ogita, Takeshi
    Rump, Siegfried M.
    Oishi, Shin'ichi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (07) : 1795 - 1814
  • [3] FAST MATRIX MULTIPLICATION
    BUNGE, CF
    CISNEROS, G
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1987, 8 (07) : 960 - 964
  • [4] Efficient Implementation of Interval Matrix Multiplication
    Hong Diep Nguyen
    APPLIED PARALLEL AND SCIENTIFIC COMPUTING, PT II, 2012, 7134 : 179 - 188
  • [5] Fast matrix multiplication is stable
    James Demmel
    Ioana Dumitriu
    Olga Holtz
    Robert Kleinberg
    Numerische Mathematik, 2007, 106 : 199 - 224
  • [6] Fast Sparse Matrix Multiplication
    Yuster, Raphael
    Zwick, Uri
    ACM TRANSACTIONS ON ALGORITHMS, 2005, 1 (01) : 2 - 13
  • [7] Fast sparse matrix multiplication
    Yuster, R
    Zwick, U
    ALGORITHMS ESA 2004, PROCEEDINGS, 2004, 3221 : 604 - 615
  • [8] Parallel implementation of interval matrix multiplication
    Revol, Nathalie
    Théveny, Philippe
    Reliable Computing, 2013, 19 (01) : 91 - 106
  • [9] Fast matrix multiplication is stable
    Demmel, James
    Dumitriu, Ioana
    Holtz, Olga
    Kleinberg, Robert
    NUMERISCHE MATHEMATIK, 2007, 106 (02) : 199 - 224
  • [10] Plethysm and fast matrix multiplication
    Seynnaeve, Tim
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (01) : 52 - 55