Approximation by Jakimovski–Leviatan-beta operators in weighted space

被引:0
作者
M. Nasiruzzaman
M. Mursaleen
机构
[1] University of Tabuk,Department of Mathematics, Faculty of Science
[2] China Medical University (Taiwan),Department of Medical Research, China Medical University Hospital
[3] Aligarh Muslim University,Department of Mathematics
[4] Asia University,Department of Computer Science and Information Engineering
来源
Advances in Difference Equations | / 2020卷
关键词
Appell polynomials; Jakimovski–Leviatan operators; Korovkin’s theorem; Modulus of continuity; Lipschitz functions; Peetre’s ; -functional; 41A10; 41A25; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this article is to introduce a more generalized version of Jakimovski–Leviatan-beta operators through the Appell polynomials. We present some uniform convergence results of these operators via Korovkin’s theorem and obtain the rate of convergence by using the modulus of continuity and Lipschitz class. Moreover, we obtain the approximation with the help of Peetre’s K-functional and give some direct theorems.
引用
收藏
相关论文
共 56 条
[1]  
Acar E.(2019)Note on Jakimovski–Leviatan operators preserving Appl. Math. Nonlinear Sci. 4 543-549
[2]  
İzgi A.(1967)-Appell polynomials Ann. Mat. Pura Appl. 4 31-45
[3]  
Serenbay S.K.(2020)Approximation of Jakimovski–Leviatan-beta type integral operators via q-calculus AIMS Math. 5 3019-3034
[4]  
Al-Salam W.A.(2019)Approximation by Jakimovski–Leviatan operators of Durrmeyer type involving multiple Appell polynomials Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113 1007-1024
[5]  
Alotaibi A.(1880)Une classe de polynômes Ann. Sci. Éc. Norm. Supér. 9 119-144
[6]  
Mursaleen M.(2019)Approximation by a generalization of the Jakimovski–Leviatan operators Filomat 33 2345-2353
[7]  
Ansari K.J.(2016)Approximation by modified integral type Jakimovski–Leviatan operators Filomat 30 29-39
[8]  
Mursaleen M.(2014)Approximation by Chlodowsky type Jakimovski–Leviatan operators J. Comput. Appl. Math. 259 153-163
[9]  
Rahman S.(1995)A class of integral Favard–Szász type operators Stud. Univ. Babeş–Bolyai, Math. 40 39-47
[10]  
Appell P.(1974)A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P. P. Korovkin’s theorem Dokl. Akad. Nauk SSSR 218 1001-1004