Chebyshev Polynomials and Generalized Complex Numbers

被引:0
作者
D. Babusci
G. Dattoli
E. Di Palma
E. Sabia
机构
[1] INFN – Laboratori Nazionali di Frascati,
[2] ENEA – Centro Ricerche Frascati,undefined
来源
Advances in Applied Clifford Algebras | 2014年 / 24卷
关键词
Generalized Complex Numbers; Generalized Trigonometry; Chebyshev Polynomials; Two-variable Chebyshev Polynomials;
D O I
暂无
中图分类号
学科分类号
摘要
The generalized complex numbers can be realized in terms of 2 × 2 or higher-order matrices and can be exploited to get different ways of looking at the trigonometric functions. Since Chebyshev polynomials are linked to the power of matrices and to trigonometric functions, we take the quite natural step to discuss them in the context of the theory of generalized complex numbers.We also briefly discuss the two-variable Chebyshev polynomials and their link with the third-order Hermite polynomials.
引用
收藏
页码:1 / 10
页数:9
相关论文
共 23 条
  • [1] Babusci D.(2011)Operational Methods and Lorentz Type Equations of Motion J. Phys. Math. 3 1-17
  • [2] Dattoli G.(2010)Quantum simulation of the Dirac equation Nature 463 68-24
  • [3] Sabia E.(2011)Relativistic equations with fractional and pseudo-differential operators Phys. Rev. A 83 062109-undefined
  • [4] Gerritsma R.(2011)The Euler Legacy to Modern Physics Appl. Math. Comput. 218 1495-undefined
  • [5] Kirchmair G.(2012)undefined Phys. Rev. E 85 031138-undefined
  • [6] Zahringer F.(2010)undefined Lecture Notes of Seminario Interdisciplinare di Matematica 9 1-undefined
  • [7] Solano E.(undefined)undefined undefined undefined undefined-undefined
  • [8] Blatt R(undefined)undefined undefined undefined undefined-undefined
  • [9] Roots C. F.(undefined)undefined undefined undefined undefined-undefined
  • [10] Babusci D.(undefined)undefined undefined undefined undefined-undefined