Existence and Uniqueness of Renormalized Solutions to Nonlinear Parabolic Equations with Lower Order Term and Diffuse Measure Data

被引:0
作者
A. Bouajaja
H. Redwane
A. Marah
机构
[1] Université Hassan 1,Laboratoire MISI, FST Settat
[2] Université Hassan 1,Faculté des Sciences Juridiques, Économiques et Sociales
来源
Mediterranean Journal of Mathematics | 2018年 / 15卷
关键词
Nonlinear parabolic equations; existence; uniqueness; renormalized solutions; diffuse measure; 35K55; 35A01; 35A02; 47D20;
D O I
暂无
中图分类号
学科分类号
摘要
Here we give an existence and uniqueness result of a renormalized solution for a class of nonlinear parabolic equations ∂b(u)∂t-div(a(x,t,∇u))+div(Φ(x,t,u))=μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle {\partial b(u) \over \partial t} - \mathrm{div}(a(x,t,\nabla u))+\mathrm{div}(\Phi (x,t, u))=\mu $$\end{document}, where the right side is a measure data, b is a strictly increasing C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-function, -div(a(x,t,∇u))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$- \mathrm{div}(a(x,t,\nabla u))$$\end{document} is a Leray–Lions type operator with growth |∇u|p-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\nabla u|^{p-1}$$\end{document} in ∇u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla u$$\end{document} and Φ(x,t,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi (x,t, u)$$\end{document} is a nonlinear lower order term.
引用
收藏
相关论文
共 46 条
[1]  
Bénilan P(1995)An Ann. Scuola Norm. Sup. Pisa. 22 241-273
[2]  
Boccardo L(2016)-theory of existence and uniqueness of solutions of nonlinear elliptic equations Commun. Pure Appl. Anal. 22 197-217
[3]  
Gallouët T(1997)Existence and uniqueness of a solution for a class of parabolic equations with two unbounded nonlinearities Proc. Roy. Soc. Edinb. Sect. A 127 1137-1152
[4]  
Gariepy R(1999)Renormalised solutions of nonlinear parabolic problems with C. R. Acad. Sci. Paris Sér. I329 575-580
[5]  
Pierre M(2001) data, existence and uniqueness J. Differ. Equ. 177 331-374
[6]  
Vazquez J(2013)Existence et unicité de la solution reormalisée d’un problème parabolique assez général Manuscr. Math. 141 601-635
[7]  
Blanchard D(2005)Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems J. Differ. Equ. 210 383-428
[8]  
Guibé O(1997)Renormalized solutions of nonlinear parabolic equations with diffuse measure data J. Funct. Anal. 147 237-258
[9]  
Redwane H(2011)Stefan problems with nonlinear diffusion and convection Anal. Appl. Singap. 9 161-186
[10]  
Blanchard D(2013)Nonlinear parabolic equations with measure data Proc. Roy. Soc. Edinb. 143A 1185-1208