An Empirical Study on Detection of Android Adware Using Machine Learning Techniques

被引:0
|
作者
Umar Farooq
Surinder Singh Khurana
Parvinder Singh
Munish Kumar
机构
[1] Central University of Punjab,Department of Computer Science & Technology
[2] Maharaja Ranjit Singh Punjab Technical University,Department of Computational Sciences
来源
关键词
Android Adware Detection; Malware; Ensemble Learning; Light Gradient Boosting Machine; Extended Gradient Boosting Machine;
D O I
暂无
中图分类号
学科分类号
摘要
The Android operating system, without showing signs of diminishing, has experienced unprecedented popularity and continues to thrive with a significant user base. Its notable aspect for supporting third-party applications has revolutionized the digital landscape, allowing developers to generate revenue through advertising. Adware has emerged as a prominent monetization method for developers of both Adware and the applications that integrate it. However, as the utilization of Adware proliferates, it simultaneously escalates the risk of fraudulent activities associated with advertising approaches. The increasing prevalence of Adware introduces a pressing need for robust detection and mitigation strategies to address the potentially detrimental effects of fraudulent practices. In response, the proposed system focuses on analyzing and identifying alterations in network traffic acquired from Android devices. This research delves into an extensive exploration of machine and deep learning models, aiming to enhance the detection and mitigation of Adware. The exceptional capabilities of the LGBM model highlight the system's noteworthy performance in binary classification. However, in multiclass classification, the XGBM model emerges as the frontrunner, outperforming other models and showcasing superior effectiveness in distinguishing and classifying Adware and general Malware. These outcomes highlight the remarkable efficacy of the system in accurately classifying adware instances, regardless of the classification scenario. The findings not only validate the viability of the proposed system but also underscore the superior performance of specific machine learning models employed in the research. With further refinement and optimization, the system holds great promise in enhancing the security and integrity of the Android ecosystem.
引用
收藏
页码:38753 / 38792
页数:39
相关论文
共 50 条
  • [1] An Empirical Study on Detection of Android Adware Using Machine Learning Techniques
    Farooq, Umar
    Khurana, Surinder Singh
    Singh, Parvinder
    Kumar, Munish
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (13) : 38753 - 38792
  • [2] MadDroid: malicious adware detection in Android using deep learning
    Seraj, Saeed
    Pavlidis, Michalis
    Trovati, Marcello
    Polatidis, Nikolaos
    Journal of Cyber Security Technology, 2024, 8 (03) : 163 - 190
  • [3] An empirical framework for defect prediction using machine learning techniques with Android software
    Malhotra, Ruchika
    APPLIED SOFT COMPUTING, 2016, 49 : 1034 - 1050
  • [4] Structural analysis and detection of android botnets using machine learning techniques
    G. Kirubavathi
    R. Anitha
    International Journal of Information Security, 2018, 17 : 153 - 167
  • [5] Structural analysis and detection of android botnets using machine learning techniques
    Kirubavathi, G.
    Anitha, R.
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2018, 17 (02) : 153 - 167
  • [6] A Survey on Android Malware Detection Techniques Using Machine Learning Algorithms
    Alqahtani, Ebtesam J.
    Zagrouba, Rachid
    Almuhaideb, Abdullah
    2019 SIXTH INTERNATIONAL CONFERENCE ON SOFTWARE DEFINED SYSTEMS (SDS), 2019, : 110 - 117
  • [7] Behavioral based detection of android ransomware using machine learning techniques
    Kirubavathi, G.
    Anne, W. Regis
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (09) : 4404 - 4425
  • [8] A Survey on Android Malware Detection Techniques Using Supervised Machine Learning
    Altaha, Safa J.
    Aljughaiman, Ahmed
    Gul, Sonia
    IEEE ACCESS, 2024, 12 : 173168 - 173191
  • [9] MLDroid—framework for Android malware detection using machine learning techniques
    Arvind Mahindru
    A. L. Sangal
    Neural Computing and Applications, 2021, 33 : 5183 - 5240
  • [10] Empirical Study on Intelligent Android Malware Detection based on Supervised Machine Learning
    Abdullah, Talal A. A.
    Ali, Waleed
    Abdulghafor, Rawad
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (04) : 215 - 224