Periodic solutions of nonlinear fractional pantograph integro-differential equations with Ψ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi -$$\end{document}Caputo derivative

被引:0
作者
Djamal Foukrach
Soufyane Bouriah
Saïd Abbas
Mouffak Benchohra
机构
[1] University Hassiba Benbouali of Chlef,Department of Mathematics, Faculty of Exact Sciences and Informatics
[2] University of Saïda–Dr. Moulay Tahar,Department of Electronics
[3] University of Sidi Bel-Abbes,Laboratory of Mathematics
关键词
Coincidence degree theory; Existence; Uniqueness; -Caputo fractional derivative; 34A08; 34B10; 34B40;
D O I
10.1007/s11565-022-00396-8
中图分类号
学科分类号
摘要
The aim purpose of the present work is to study the existence and uniqueness of periodic solutions for a wide class of nonlinear fractional integro-differential equations of pantograph type involving Ψ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi -$$\end{document}Caputo derivative operator. The coincidence degree theory introduced before by Mawhin is used for the existence and uniqueness of our problem. The validity of the findings is verified by an appropriate example.
引用
收藏
页码:1 / 22
页数:21
相关论文
共 44 条
  • [11] Kiruthika S(2013)Boundary value problems for a class of fractional differential equations depending on first derivative Commun. Math. Anal. 15 15-468
  • [12] Trujillo JJ(2015)Existence and uniqueness results for a class of BVPs for nonlinear fractional differential equations Georgian Math. J. 22 45-3690
  • [13] Benchohra M(2017)On the solutions of a nonlinear fractional integro-Differential equation of Pantograph type Mediter. J. Math. 14 194-510
  • [14] Bouriah S(1971)The dynamics of a current collection system for an electric locomotive Proc. R. Soc. Lond. Ser. A 322 447-55
  • [15] Henderson J(2018)Hilfer-Katugampola fractional derivative Comput. Appl. Math. 37 3672-undefined
  • [16] Benchohra M(2017)Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet J. Comput. Appl. Math. 309 493-undefined
  • [17] Bouriah S(2021)Dynamics and stability of $\Psi $-fractional Pantograph equations with boundary conditions Bol. Soc. Parana. Mat. 39 43-undefined
  • [18] Nieto Juan J(undefined)undefined undefined undefined undefined-undefined
  • [19] Benchohra M(undefined)undefined undefined undefined undefined-undefined
  • [20] Bouriah S(undefined)undefined undefined undefined undefined-undefined