Periodic solutions of nonlinear fractional pantograph integro-differential equations with Ψ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi -$$\end{document}Caputo derivative

被引:0
作者
Djamal Foukrach
Soufyane Bouriah
Saïd Abbas
Mouffak Benchohra
机构
[1] University Hassiba Benbouali of Chlef,Department of Mathematics, Faculty of Exact Sciences and Informatics
[2] University of Saïda–Dr. Moulay Tahar,Department of Electronics
[3] University of Sidi Bel-Abbes,Laboratory of Mathematics
关键词
Coincidence degree theory; Existence; Uniqueness; -Caputo fractional derivative; 34A08; 34B10; 34B40;
D O I
10.1007/s11565-022-00396-8
中图分类号
学科分类号
摘要
The aim purpose of the present work is to study the existence and uniqueness of periodic solutions for a wide class of nonlinear fractional integro-differential equations of pantograph type involving Ψ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi -$$\end{document}Caputo derivative operator. The coincidence degree theory introduced before by Mawhin is used for the existence and uniqueness of our problem. The validity of the findings is verified by an appropriate example.
引用
收藏
页码:1 / 22
页数:21
相关论文
共 44 条
  • [1] Abdo MS(2021)On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative Adv. Differ. Equ. 2021 65-711
  • [2] Abdeljawad T(2012)Some generalized fractional calculus operators and their applications in integral equations Fract. Calc. Appl. Anal. 15 700-481
  • [3] Kucche KD(2017)A Caputo fractional derivative of a function with respect to another function Commun. Nonlinear Sci. Numer. Simul. 44 460-8
  • [4] Alqudah MA(2020)Functional differential equations involving the $\Psi $-Caputo fractional derivative Fractal Fract. 4 1-720
  • [5] Ali SM(2013)Existence of solutions of nonlinear fractional pantograph equations Acta. Math. Sci. 33 712-67
  • [6] Jeelani MB(2015)Existence and stability results for nonlinear implicit neutral fractional differential equations with finite delay and impulses Commun. Appl. Nonlinear Anal. 22 46-35
  • [7] Agrawal OP(2018)Existence of periodic solutions for nonlinear implicit Hadamardar’s fractional differential equations Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 112 25-10
  • [8] Almeida R(2016)Nonlinear implicit differential equation of fractional order at resonance Electron. J. Differ. Equ. 2016 1-91
  • [9] Almeida R(2018)On the $\Psi -$Hilfer fractional derivative Commun. Nonlinear Sci. Numer. Simul. 60 72-28
  • [10] Balachandran K(2020)Coupled systems of $\Psi $-Caputo differential equations with initial conditions in Banach spaces Mediter. J. Math. 17 169-55