Spectral characterization of the quadratic variation of mixed Brownian-fractional Brownian motion

被引:0
作者
Azmoodeh E. [1 ]
Valkeila E. [1 ]
机构
[1] Department of Mathematics and Systems Analysis, Aalto University, 00076 Aalto
基金
芬兰科学院;
关键词
Fractional Brownian motion; Quadratic variation; Randomized periodogram;
D O I
10.1007/s11203-013-9079-9
中图分类号
学科分类号
摘要
Dzhaparidze and Spreij (Stoch Process Appl, 54:165-174, 1994) showed that the quadratic variation of a semimartingale can be approximated using a randomized periodogram. We show that the same approximation is valid for a special class of continuous stochastic processes. This class contains both semimartingales and non-semimartingales. The motivation comes partially from the recent work by Bender et al. (Finance Stoch, 12:441-468, 2008), where it is shown that the quadratic variation of the log-returns determines the hedging strategy. © 2013 Springer Science+Business Media Dordrecht.
引用
收藏
页码:97 / 112
页数:15
相关论文
共 16 条
[1]  
Barndorff-Nielsen E.O., Shephard N., Estimating quadratic variation using realized variance, J Appl Econ, 17, pp. 457-477, (2002)
[2]  
Bender C., Sottinen T., Valkeila E., Pricing by hedging and no-arbitrage beyond semimartingales, Finance Stoch, 12, pp. 441-468, (2008)
[3]  
Cheridito P., Mixed fractional Brownian motion, Bernoulli, 7, 6, pp. 913-934, (2001)
[4]  
Dasgupta A., Kallianpur G., Multiple fractional integrals, Probab Theory Relat Fields, 115, pp. 505-525, (1999)
[5]  
Dzhaparidze K., Spreij P., Spectral characterization of the optional quadratic variation processes, Stoch Procces Appl, 54, pp. 165-174, (1994)
[6]  
Follmer H., Calcul d'Ito sans probabilités, Seminar on probability, XV, pp. 143-150, (1981)
[7]  
Janson S., Gaussian Hilbert Spaces, (1997)
[8]  
Memin J., Mishura Y., Valkeila E., Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion, Stat Probab Lett, 51, pp. 197-206, (2001)
[9]  
Mishura Y., Stochastic calculus for fractional Brownian Motion and related processes, Lect Notes Math, 1929, (2008)
[10]  
Nualart D., Rascanu A., Differential equations driven by fractional Brownian motion, Collect Math, 53, pp. 55-81, (2002)