Artificial intelligence for the detection, prediction, and management of atrial fibrillation; [Erkennung, Vorhersage und Behandlung von Vorhofflimmern mithilfe künstlicher Intelligenz]

被引:15
作者
Isaksen J.L. [1 ]
Baumert M. [2 ]
Hermans A.N.L. [3 ]
Maleckar M. [4 ]
Linz D. [1 ,3 ]
机构
[1] Department of Biomedical Sciences, University of Copenhagen, Copenhagen
[2] School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA
[3] Department of Cardiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, Maastricht
[4] Department of Computational Physiology, Simula Research Laboratory, Oslo
关键词
AF; AI; Deep learning; Disease management; Machine learning; Neural networks;
D O I
10.1007/s00399-022-00839-x
中图分类号
学科分类号
摘要
The present article reviews the state of the art of machine learning algorithms for the detection, prediction, and management of atrial fibrillation (AF), as well as of the development and evaluation of artificial intelligence (AI) in cardiology and beyond. Today, AI detects AF with a high accuracy using 12-lead or single-lead electrocardiograms or photoplethysmography. The prediction of paroxysmal or future AF currently operates at a level of precision that is too low for clinical use. Further studies are needed to determine whether patient selection for interventions may be possible with machine learning. © 2022, The Author(s).
引用
收藏
页码:34 / 41
页数:7
相关论文
共 65 条
  • [31] Tison G.H., Sanchez J.M., Ballinger B., Singh A., Olgin J.E., Pletcher M.J., Vittinghoff E., Lee E.S., Fan S.M., Gladstone R.A., Et al., Passive detection of atrial fibrillation using a commercially available smartwatch, JAMA Cardiol, 3, pp. 409-416, (2018)
  • [32] Aschbacher K., Yilmaz D., Kerem Y., Crawford S., Benaron D., Liu J., Eaton M., Tison G.H., Olgin J.E., Li Y., Et al., Atrial fibrillation detection from raw photoplethysmography waveforms: a deep learning application, Heart Rhythm O2, 1, pp. 3-9, (2020)
  • [33] Poh M.-Z., Poh Y.C., Chan P.-H., Wong C.-K., Pun L., Leung W.W.-C., Wong Y.-F., Wong M.M.-Y., Chu D.W.-S., Siu C.-W., Diagnostic assessment of a deep learning system for detecting atrial fibrillation in pulse waveforms, Heart, 104, pp. 1921-1928, (2018)
  • [34] Torres-Soto J., Ashley E.A., Multi-task deep learning for cardiac rhythm detection in wearable devices, NPJ Digit Med, 3, (2020)
  • [35] Pluymaekers N.A.H.A., Hermans A.N.L., van der Velden R.M.J., Gawalko M., den Uijl D.W., Buskes S., Vernooy K., Crijns H.J.G.M., Hendriks J.M., Linz D., Implementation of an on-demand app-based heart rate and rhythm monitoring infrastructure for the management of atrial fibrillation through teleconsultation: TeleCheck-AF, Europace, 23, pp. 345-352, (2021)
  • [36] Yan B.P., Lai W.H.S., Chan C.K.Y., Au A.C.K., Freedman B., Poh Y.C., Poh M.-Z., High-throughput, contact-free detection of atrial fibrillation from video with deep learning, JAMA Cardiol, 5, pp. 105-107, (2020)
  • [37] Liu X., Yang X., Wang D., Wong A., Ma L., Li L., VidAF: a motion-robust model for screening atrial fibrillation from facial videos, IEEE J Biomed Health Inform, (2021)
  • [38] Jiang F., Hong C., Cheng T., Wang H., Xu B., Zhang B., Attention-based multi-scale features fusion for unobtrusive atrial fibrillation detection using ballistocardiogram signal, BioMed Eng OnLine, 20, (2021)
  • [39] Prevention of Stroke and Sudden Cardiac Death by Recording of 1-Channel Electrocardiograms, (2021)
  • [40] Bhavnani S., Development of a novel convolution neural network for arrhythmia classification for shockable cardiac rhythms, (2020)