Artificial intelligence for the detection, prediction, and management of atrial fibrillation; [Erkennung, Vorhersage und Behandlung von Vorhofflimmern mithilfe künstlicher Intelligenz]

被引:15
作者
Isaksen J.L. [1 ]
Baumert M. [2 ]
Hermans A.N.L. [3 ]
Maleckar M. [4 ]
Linz D. [1 ,3 ]
机构
[1] Department of Biomedical Sciences, University of Copenhagen, Copenhagen
[2] School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA
[3] Department of Cardiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, Maastricht
[4] Department of Computational Physiology, Simula Research Laboratory, Oslo
关键词
AF; AI; Deep learning; Disease management; Machine learning; Neural networks;
D O I
10.1007/s00399-022-00839-x
中图分类号
学科分类号
摘要
The present article reviews the state of the art of machine learning algorithms for the detection, prediction, and management of atrial fibrillation (AF), as well as of the development and evaluation of artificial intelligence (AI) in cardiology and beyond. Today, AI detects AF with a high accuracy using 12-lead or single-lead electrocardiograms or photoplethysmography. The prediction of paroxysmal or future AF currently operates at a level of precision that is too low for clinical use. Further studies are needed to determine whether patient selection for interventions may be possible with machine learning. © 2022, The Author(s).
引用
收藏
页码:34 / 41
页数:7
相关论文
共 65 条
  • [1] Hindricks G., Potpara T., Dagres N., Arbelo E., Bax J.J., Blomstrom-Lundqvist C., Boriani G., Castella M., Dan G.-A., Dilaveris P.E., 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European association for cardio-thoracic surgery (EACTS): The task force for the diagnosis and management of atrial fibrillation of the European society of cardiology (ESC) developed with the special contribution of the European heart rhythm association
  • [2] Reinhold T., Lindig C., Willich S.N., Bruggenjurgen B., The costs of atrial fibrillation in patients with cardiovascular comorbidities—a longitudinal analysis of German health insurance data, Europace, 13, pp. 1275-1280, (2011)
  • [3] Schnabel R.B., Wallenhorst C., Engler D., Blankenberg S., Pfeiffer N., Spruenker N.A., Buettner M., Michal M., Lackner K.J., Munzel T., Et al., Refined atrial fibrillation screening and cost-effectiveness in the German population, Heart, (2021)
  • [4] Hannun A.Y., Rajpurkar P., Haghpanahi M., Tison G.H., Bourn C., Turakhia M.P., Ng A.Y., Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network, Nat Med, 25, pp. 65-69, (2019)
  • [5] Nagendran M., Chen Y., Lovejoy C.A., Gordon A.C., Komorowski M., Harvey H., Topol E.J., Ioannidis J.P.A., Collins G.S., Maruthappu M., Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies, BMJ, 368, (2020)
  • [6] Hicks S.A., Isaksen J.L., Thambawita V., Ghouse J., Ahlberg G., Linneberg A., Grarup N., Strumke I., Ellervik C., Olesen M.S., Et al., Explaining deep neural networks for knowledge discovery in electrocardiogram analysis, Sci Rep, 11, (2021)
  • [7] Zech J.R., Badgeley M.A., Liu M., Costa A.B., Titano J.J., Oermann E.K., Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study, PLoS Med, 15, (2018)
  • [8] Lin H., Li R., Liu Z., Chen J., Yang Y., Chen H., Lin Z., Lai W., Long E., Wu X., Et al., Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial, EClinicalMedicine, 9, pp. 52-59, (2019)
  • [9] Hill N.R., Sandler B., Mokgokong R., Lister S., Ward T., Boyce R., Farooqui U., Gordon J., Cost-effectiveness of targeted screening for the identification of patients with atrial fibrillation: evaluation of a machine learning risk prediction algorithm, J Med Econ, 23, pp. 386-393, (2020)
  • [10] McCarthy J., Minsky M.L., Rochester N., Corporation I.B.M., Shannon C.E., A proposal for the Dartmouth summer research project on artificial intelligence, (2022)