Lyapunov type inequalities for the Riemann-Liouville fractional differential equations of higher order

被引:0
作者
Laihui Zhang
Zhaowen Zheng
机构
[1] Qufu Normal University,School of Mathematical Sciences
来源
Advances in Difference Equations | / 2017卷
关键词
Lyapunov type inequality; Riemann-Liouville fractional differential equation; Green’s function; higher fractional order;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, some new Lyapunov type inequalities will be presented for Riemann-Liouville fractional differential equations of the form (Daαx)(t)+p(t)|x(t)|μ−1x(t)+q(t)|x(t)|γ−1(t)x(t)=f(t),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl(D^{\alpha}_{a}x\bigr) (t)+p(t)\big| x(t)\big|^{\mu-1}x (t)+q(t)\big| x(t)\big|^{\gamma -1}(t)x(t)=f(t), $$\end{document} where α∈(n−1,n]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\in(n-1, n]$\end{document} (n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\geq3$\end{document}), p, q, f are real-valued functions and 0<γ<1<μ<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\gamma<1<\mu<n$\end{document}.
引用
收藏
相关论文
共 50 条
[41]   Positive solutions for some Riemann-Liouville fractional boundary value problems [J].
Bachar, Imed ;
Maagli, Habib .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (07) :5093-5106
[42]   LYAPUNOV-TYPE INEQUALITIES FOR THIRD ORDER NONLINEAR EQUATIONS [J].
Behrens, Brian ;
Dhar, Sougata .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2022, 14 (02) :265-277
[43]   Lyapunov-type inequalities for even order difference equations [J].
Zhang, Qi-Ming ;
Tang, X. H. .
APPLIED MATHEMATICS LETTERS, 2012, 25 (11) :1830-1834
[44]   Lyapunov-type Inequalities for a System of Nonlinear Differential Equations [J].
WEI GENG-PING ;
Shi Shao-yun .
CommunicationsinMathematicalResearch, 2017, 33 (03) :205-214
[45]   LYAPUNOV-TYPE INEQUALITIES FOR FRACTIONAL DIFFERENTIAL EQUATIONS UNDER MULTI-POINT BOUNDARY CONDITIONS [J].
Wang, Youyu ;
Wang, Qichao .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (03) :611-619
[46]   Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues [J].
Eloe, Paul W. ;
Neugebauer, Jeffrey T. .
CUBO-A MATHEMATICAL JOURNAL, 2023, 25 (02) :251-272
[47]   Lyapunov-type inequality for higher order difference equations [J].
Liu, Xin-Ge ;
Tang, Mei-Lan .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 :666-669
[48]   POSITIVE SOLUTIONS FOR SUPERLINEAR RIEMANN-LIOUVILLE FRACTIONAL BOUNDARY-VALUE PROBLEMS [J].
Bachar, Imed ;
Maagli, Habib ;
Radulescu, Vicentiu D. .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
[49]   Lyapunov-type inequalities for certain higher-order difference equations with mixed non-linearities [J].
Haidong Liu .
Advances in Difference Equations, 2018
[50]   Lyapunov-type inequalities for certain higher-order difference equations with mixed non-linearities [J].
Liu, Haidong .
ADVANCES IN DIFFERENCE EQUATIONS, 2018,