Lyapunov type inequalities for the Riemann-Liouville fractional differential equations of higher order

被引:0
作者
Laihui Zhang
Zhaowen Zheng
机构
[1] Qufu Normal University,School of Mathematical Sciences
来源
Advances in Difference Equations | / 2017卷
关键词
Lyapunov type inequality; Riemann-Liouville fractional differential equation; Green’s function; higher fractional order;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, some new Lyapunov type inequalities will be presented for Riemann-Liouville fractional differential equations of the form (Daαx)(t)+p(t)|x(t)|μ−1x(t)+q(t)|x(t)|γ−1(t)x(t)=f(t),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl(D^{\alpha}_{a}x\bigr) (t)+p(t)\big| x(t)\big|^{\mu-1}x (t)+q(t)\big| x(t)\big|^{\gamma -1}(t)x(t)=f(t), $$\end{document} where α∈(n−1,n]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\in(n-1, n]$\end{document} (n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\geq3$\end{document}), p, q, f are real-valued functions and 0<γ<1<μ<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\gamma<1<\mu<n$\end{document}.
引用
收藏
相关论文
共 50 条
[31]   On multivariate higher order Lyapunov-type inequalities [J].
Ji, Tieguo ;
Fan, Jie .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
[32]   On multivariate higher order Lyapunov-type inequalities [J].
Tieguo Ji ;
Jie Fan .
Journal of Inequalities and Applications, 2014
[33]   On a singular Riemann-Liouville fractional boundary value problem with parameters [J].
Tudorache, Alexandru ;
Luca, Rodica .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (01) :151-168
[34]   Lyapunov type inequalities for second order forced mixed nonlinear impulsive differential equations [J].
Agarwal, Ravi P. ;
Ozbekler, Abdullah .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 282 :216-225
[35]   Lyapunov type inequalities for second-order half-linear differential equations [J].
Wang, Xiaoping .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (02) :792-801
[36]   Lyapunov-type inequalities for a class of higher-order linear differential equations with anti-periodic boundary conditions [J].
Yang, Xiaojing ;
Lo, Kueiming .
APPLIED MATHEMATICS LETTERS, 2014, 34 :33-36
[37]   Lyapunov-type inequalities for higher-order half-linear difference equations [J].
Liu, Haidong .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
[38]   Lyapunov-type inequalities for higher-order half-linear difference equations [J].
Haidong Liu .
Journal of Inequalities and Applications, 2020
[39]   Existence of positive solutions for Riemann-Liouville fractional order three-point boundary value problem [J].
Rao, Sabbavarapu Nageswara .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (04)
[40]   New Lyapunov-type inequalities for a class of even-order linear differential equations [J].
Yang, Xiaojing ;
Lo, Kueiming .
MATHEMATISCHE NACHRICHTEN, 2015, 288 (16) :1910-1915