Lyapunov type inequalities for the Riemann-Liouville fractional differential equations of higher order

被引:0
作者
Laihui Zhang
Zhaowen Zheng
机构
[1] Qufu Normal University,School of Mathematical Sciences
来源
Advances in Difference Equations | / 2017卷
关键词
Lyapunov type inequality; Riemann-Liouville fractional differential equation; Green’s function; higher fractional order;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, some new Lyapunov type inequalities will be presented for Riemann-Liouville fractional differential equations of the form (Daαx)(t)+p(t)|x(t)|μ−1x(t)+q(t)|x(t)|γ−1(t)x(t)=f(t),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl(D^{\alpha}_{a}x\bigr) (t)+p(t)\big| x(t)\big|^{\mu-1}x (t)+q(t)\big| x(t)\big|^{\gamma -1}(t)x(t)=f(t), $$\end{document} where α∈(n−1,n]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\in(n-1, n]$\end{document} (n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\geq3$\end{document}), p, q, f are real-valued functions and 0<γ<1<μ<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\gamma<1<\mu<n$\end{document}.
引用
收藏
相关论文
共 50 条
[21]   Lyapunov-type inequalities for higher-order Caputo fractional differential equations with general two-point boundary conditions [J].
Srivastava, Satyam narayan ;
Pati, Smita ;
Graef, John r. ;
Domoshnitsky, Alexander ;
Padhi, Seshadev .
CUBO-A MATHEMATICAL JOURNAL, 2024, 26 (02) :259-277
[22]   Lyapunov type inequalities for even order differential equations with mixed nonlinearities [J].
Ravi P Agarwal ;
Abdullah Özbekler .
Journal of Inequalities and Applications, 2015
[23]   Lyapunov type inequalities for even order differential equations with mixed nonlinearities [J].
Agarwal, Ravi P. ;
Ozbekler, Abdullah .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
[24]   Existence and Multiplicity of Positive Solutions for a Singular Riemann-Liouville Fractional Differential Problem [J].
Luca, Rodica .
FILOMAT, 2020, 34 (12) :3931-3942
[25]   LYAPUNOV-TYPE INEQUALITIES FOR A CLASS OF LINEAR SEQUENTIAL FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Peng, Youhua ;
Wang, Xuhuan .
DYNAMIC SYSTEMS AND APPLICATIONS, 2019, 28 (04) :859-867
[26]   Lyapunov-type inequalities for Hadamard fractional differential equation under Sturm-Liouville boundary conditions [J].
Wang, Youyu ;
Zhang, Lu ;
Zhang, Yang .
AIMS MATHEMATICS, 2021, 6 (03) :2981-2995
[27]   Existence of the positive solutions for boundary value problems of mixed differential equations involving the Caputo and Riemann-Liouville fractional derivatives [J].
Liu, Yujing ;
Yan, Chenguang ;
Jiang, Weihua .
BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
[28]   Lyapunov-type inequalities for a class of even-order differential equations [J].
Zhang, Qi-Ming ;
He, Xiaofei .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
[29]   Lyapunov-type inequalities for a class of even-order differential equations [J].
Qi-Ming Zhang ;
Xiaofei He .
Journal of Inequalities and Applications, 2012
[30]   Computer Simulation and Iterative Algorithm for Approximate Solving of Initial Value Problem for Riemann-Liouville Fractional Delay Differential Equations [J].
Hristova, Snezhana ;
Stefanova, Kremena ;
Golev, Angel .
MATHEMATICS, 2020, 8 (04)