Exponential time decay of solutions to a nonlinear fourth-order parabolic equation

被引:0
|
作者
A. Jüngel
G. Toscani
机构
[1] Fachbereich Mathematik und Statistik,
[2] Universität Konstanz,undefined
[3] Fach D193,undefined
[4] D-78457 Konstanz,undefined
[5] Germany,undefined
[6] e-mail: juengel@fmi.uni-konstanz.de,undefined
[7] Dipartimento di Matematica,undefined
[8] Universitá degli Studi di Pavia,undefined
[9] via Ferrata 1,undefined
[10] I-27100 Pavia,undefined
[11] Italy,undefined
[12] e-mail: toscani@dimat.unipv.it,undefined
关键词
Key word. Asymptotic behavior, entropy dissipation, higher-order parabolic equation, diffusion equation.¶Mathematics Subject Classification (2000). 35B40, 35K35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the large-time behavior of weak solutions to the nonlinear fourth-order parabolic equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n_t = -(n(\log n)_{xx})_{xx}$\end{document} modeling interface fluctuations in spin systems. We study here the case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x\in \Omega =(0,1)$\end{document}, with n = 1, nx = 0 on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\partial \Omega$\end{document}. In particular, we prove the exponential decay of u(x,t) towards the constant steady state \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n_\infty =1$\end{document} in the L1 norm for long times and we give the explicit rate of decay. The result is based on classical entropy estimates, and on detailed lower bounds for the entropy production.
引用
收藏
页码:377 / 386
页数:9
相关论文
共 50 条
  • [41] Global attractor for a fourth-order parabolic equation
    Zhao, Xiaopeng
    Liu, Changchun
    Liu, Bo
    Journal of Information and Computational Science, 2010, 7 (08): : 1819 - 1825
  • [42] A fourth-order parabolic equation with a logarithmic nonlinearity
    Bonfoh, A
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 69 (01) : 35 - 48
  • [43] On a double degenerate fourth-order parabolic equation
    Liang, Bo
    Su, Caiyue
    Wang, Ying
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (02)
  • [44] EXPONENTIAL GROWTH OF SOLUTIONS FOR A VARIABLE-EXPONENT FOURTH-ORDER VISCOELASTIC EQUATION WITH NONLINEAR BOUNDARY FEEDBACK
    Shahrouzi, Mohammad
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (03): : 507 - 520
  • [45] Infinite Time Blow-Up of Solutions to a Fourth-Order Nonlinear Parabolic Equation with Logarithmic Nonlinearity Modeling Epitaxial Growth
    Ding, Hang
    Zhou, Jun
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (06)
  • [46] Infinite Time Blow-Up of Solutions to a Fourth-Order Nonlinear Parabolic Equation with Logarithmic Nonlinearity Modeling Epitaxial Growth
    Hang Ding
    Jun Zhou
    Mediterranean Journal of Mathematics, 2021, 18
  • [47] A fourth-order nonlinear difference equation
    Anderson, DR
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (01) : 161 - 169
  • [48] On a fourth-order nonlinear Helmholtz equation
    Bonheure, Denis
    Casteras, Jean-Baptiste
    Mandel, Rainer
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2019, 99 (03): : 831 - 852
  • [49] SOLUTIONS OF A FOURTH-ORDER DIFFERENTIAL EQUATION
    GROSSWALD, E
    AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (10): : 1013 - &
  • [50] Existence and Asymptotic Behaviors to a Nonlinear Fourth-order Parabolic Equation with a General Source
    Liang, Bo
    Li, Qingchun
    Zhu, Yongbo
    Zhu, Yongzheng
    TAIWANESE JOURNAL OF MATHEMATICS, 2024, 28 (05): : 969 - 990