Almost primitive elements of free nonassociative (anty)commutative algebras of small rank

被引:1
作者
Klimakov A.V. [1 ]
机构
[1] Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991, Leninskie Gory
关键词
Free Algebra; Primitive Element; High Part; Regular Representation; Free Generator;
D O I
10.3103/S002713221205004X
中图分类号
学科分类号
摘要
Criteria for homogeneous elements to be almost primitive are obtained and algorithms to recognize homogeneous almost primitive elements are constructed for free nonassociative commutative and anticommutative algebras of rank 1 and 2. © 2012 Allerton Press, Inc.
引用
收藏
页码:206 / 210
页数:4
相关论文
共 7 条
[1]  
Kurosh A.G., Nonassociative Free Algebras and Free Products of Algebras, Matem. Sborn., 20, (1947)
[2]  
Shirshov A.I., Subalgebras of Free Commutative and Anticommutative Algebras, Matem. Sborn., 34, (1954)
[3]  
Mikhalev A.A., Shpilrain V., Yu J.-T., Combinatorial Methods. Free Groups, Polynomials, and Free Algebras, (2004)
[4]  
Mikhalev A.A., Umirbaev U.U., Yu J.-T., Automorphic Orbits of Elements of Free Nonassociative Algebras, J. Algebra, 243, (2001)
[5]  
Mikhalev A.A., Mikhalev A.V., Chepovskii A.A., Champagnier K., Primitive Elements of Free Nonassociative Algebras, Fundam. Prikl. Matem., 13, 5, (2007)
[6]  
Mikhalev A.A., Yu J.-T., Primitive, Almost Primitive, Test, and Δ-Primitive Elements of Free Algebras with the Nielsen-Schreier Property, J. Algebra, 228, (2000)
[7]  
Klimakov A.V., Mikhalev A.A., Almost Primitive Elements of Free Nonassociative Algebras of Small Ranks, Fundam. Prikl. Matem., 17, 1, (2012)