Relative Tor Functors with Respect to a Semidualizing Module

被引:1
作者
Maryam Salimi
Sean Sather-Wagstaff
Elham Tavasoli
Siamak Yassemi
机构
[1] Islamic Azad University,Department of Mathematics, East Tehran Branch
[2] North Dakota State University Dept. # 2750,Department of Mathematics
[3] University of Tehran,Department of Mathematics
[4] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
Algebras and Representation Theory | 2014年 / 17卷
关键词
Proper resolutions; Relative homology; Semidualizing modules; 13D02; 13D05; 13D07;
D O I
暂无
中图分类号
学科分类号
摘要
Let C be a semidualizing module over a commutative noetherian ring R. We exhibit an isomorphism \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{Tor}^{{\mathcal{F}_C}\mathcal{M}}_{i}(-,-) \cong \operatorname{Tor}^{{\mathcal{P}_C}\mathcal{M}}_{i}(-,-)$\end{document} between the bifunctors defined via C-flat and C-projective resolutions. We show how the vanishing of these functors characterizes the finiteness of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{\mathcal{F}_C}\text{-}\operatorname{pd}}$\end{document}, and use this to give a relation between the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{\mathcal{F}_C}\text{-}\operatorname{pd}}$\end{document} of a module and of a pure submodule. On the other hand, we show that other isomorphisms force C to be trivial.
引用
收藏
页码:103 / 120
页数:17
相关论文
共 32 条
[21]  
Jørgensen P(undefined)undefined undefined undefined undefined-undefined
[22]  
Holm H(undefined)undefined undefined undefined undefined-undefined
[23]  
White D(undefined)undefined undefined undefined undefined-undefined
[24]  
Sather-Wagstaff S(undefined)undefined undefined undefined undefined-undefined
[25]  
Sharif T(undefined)undefined undefined undefined undefined-undefined
[26]  
White D(undefined)undefined undefined undefined undefined-undefined
[27]  
Sather-Wagstaff S(undefined)undefined undefined undefined undefined-undefined
[28]  
Sharif T(undefined)undefined undefined undefined undefined-undefined
[29]  
White D(undefined)undefined undefined undefined undefined-undefined
[30]  
Takahashi R(undefined)undefined undefined undefined undefined-undefined