Relative Tor Functors with Respect to a Semidualizing Module

被引:1
作者
Maryam Salimi
Sean Sather-Wagstaff
Elham Tavasoli
Siamak Yassemi
机构
[1] Islamic Azad University,Department of Mathematics, East Tehran Branch
[2] North Dakota State University Dept. # 2750,Department of Mathematics
[3] University of Tehran,Department of Mathematics
[4] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
Algebras and Representation Theory | 2014年 / 17卷
关键词
Proper resolutions; Relative homology; Semidualizing modules; 13D02; 13D05; 13D07;
D O I
暂无
中图分类号
学科分类号
摘要
Let C be a semidualizing module over a commutative noetherian ring R. We exhibit an isomorphism \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{Tor}^{{\mathcal{F}_C}\mathcal{M}}_{i}(-,-) \cong \operatorname{Tor}^{{\mathcal{P}_C}\mathcal{M}}_{i}(-,-)$\end{document} between the bifunctors defined via C-flat and C-projective resolutions. We show how the vanishing of these functors characterizes the finiteness of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{\mathcal{F}_C}\text{-}\operatorname{pd}}$\end{document}, and use this to give a relation between the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{\mathcal{F}_C}\text{-}\operatorname{pd}}$\end{document} of a module and of a pure submodule. On the other hand, we show that other isomorphisms force C to be trivial.
引用
收藏
页码:103 / 120
页数:17
相关论文
共 32 条
[1]  
Avramov LL(2002)Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension Proc. Lond. Math. Soc. (3) 85 393-440
[2]  
Martsinkovsky A(1961/1962)Classes of extensions and resolutions Philos. Trans.-R. Soc. Lond., Ser. A 254 155-222
[3]  
Butler MCR(2001)Semi-dualizing complexes and their Auslander categories Trans. Am. Math. Soc. 353 1839-1883
[4]  
Horrocks G(2010)Growth in the minimal injective resolution of a local ring J. Lond. Math. Soc. (2) 81 24-44
[5]  
Christensen LW(1965)Foundations of relative homological algebra Mem. Am. Math. Soc. No. 55 39-284
[6]  
Christensen LW(1972)Gorenstein modules and related modules Math. Scand. 31 267-436
[7]  
Striuli J(2009)Relations between semidualizing complexes J. Commut. Algebra 1 393-337
[8]  
Veliche O(2008)Ascent of module structures, vanishing of Ext, and extended modules Mich. Math. J. 57 321-445
[9]  
Eilenberg S(2006)Semi-dualizing modules and related Gorenstein homological dimensions J. Pure Appl. Algebra 205 423-633
[10]  
Moore JC(2009)Cotorsion pairs induced by duality pairs J. Commut. Algebra 1 621-808