Well-posedness for the Incompressible Hall-MHD Equations in Low Regularity Spaces

被引:0
|
作者
Xing Wu
Yanghai Yu
Yanbin Tang
机构
[1] Modeling and Scientic Computing Huazhong University of Science and Technology,School of Mathematics and Statistics, Hubei Key Laboratory of Engineering
[2] Henan Agricultural University,College of Information and Management Science
来源
Mediterranean Journal of Mathematics | 2018年 / 15卷
关键词
Hall-MHD equations; Well-posedness; Low regularity Sobolev space; Primary 35Q35; Secondary 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first establish the local well-posedness of strong solutions to the Cauchy problem of the incompressible viscous resistive Hall-MHD equations in Hs(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s(\mathbb {R}^3)$$\end{document}(32<s≤52)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\frac{3}{2}< s\le \frac{5}{2})$$\end{document}, and then we prove that the local solution is global when the initial data is small enough.
引用
收藏
相关论文
共 50 条
  • [31] Well-posedness and regularity for fractional damped wave equations
    Yong Zhou
    Jia Wei He
    Monatshefte für Mathematik, 2021, 194 : 425 - 458
  • [32] Liouville-type theorems for the stationary incompressible inhomogeneous Hall-MHD and MHD equations
    Liu, Pan
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (01)
  • [33] New regularity criteria for the 3D Hall-MHD equations
    Alghamdi, Ahmad Mohammad
    Gala, Sadek
    Ragusa, Maria Alessandra
    ANNALES POLONICI MATHEMATICI, 2018, 121 (01) : 7 - 20
  • [34] Well-posedness and regularity for solutions of caputo stochastic fractional differential equations in Lp spaces
    Phan Thi Huong
    Kloeden, P. E.
    Doan Thai Son
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2023, 41 (01) : 1 - 15
  • [35] Liouville-type theorems for the stationary incompressible inhomogeneous Hall-MHD and MHD equations
    Pan Liu
    Banach Journal of Mathematical Analysis, 2023, 17
  • [36] Global well-posedness for the 3-D incompressible inhomogeneous MHD system in the critical Besov spaces
    Zhai, Xiaoping
    Li, Yongsheng
    Yan, Wei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (01) : 179 - 195
  • [37] A regularity criterion for the generalized Hall-MHD system
    Gu, Weijiang
    Ma, Caochuan
    Sun, Jianzhu
    BOUNDARY VALUE PROBLEMS, 2016,
  • [38] A regularity criterion for a generalized Hall-MHD system
    Fan, Jishan
    Samet, Bessem
    Zhou, Yong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (10) : 2438 - 2443
  • [39] On the well-posedness of the Cauchy problem for an MHD system in Besov spaces
    Miao, Changxing
    Yuan, Baoquan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (01) : 53 - 76
  • [40] Space-time decay estimates for the incompressible viscous resistive MHD and Hall-MHD equations
    Weng, Shangkun
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (06) : 2168 - 2187