Well-posedness for the Incompressible Hall-MHD Equations in Low Regularity Spaces

被引:0
|
作者
Xing Wu
Yanghai Yu
Yanbin Tang
机构
[1] Modeling and Scientic Computing Huazhong University of Science and Technology,School of Mathematics and Statistics, Hubei Key Laboratory of Engineering
[2] Henan Agricultural University,College of Information and Management Science
来源
Mediterranean Journal of Mathematics | 2018年 / 15卷
关键词
Hall-MHD equations; Well-posedness; Low regularity Sobolev space; Primary 35Q35; Secondary 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first establish the local well-posedness of strong solutions to the Cauchy problem of the incompressible viscous resistive Hall-MHD equations in Hs(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s(\mathbb {R}^3)$$\end{document}(32<s≤52)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\frac{3}{2}< s\le \frac{5}{2})$$\end{document}, and then we prove that the local solution is global when the initial data is small enough.
引用
收藏
相关论文
共 50 条
  • [21] Global Well-Posedness for the 3D Axisymmetric Hall-MHD System with Horizontal Dissipation
    Li, Zhouyu
    Cui, Meiying
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2022, 29 (04) : 794 - 817
  • [22] Global regularity for the 3D Hall-MHD equations with low regularity axisymmetric data
    Zhouyu Li
    Pan Liu
    Monatshefte für Mathematik, 2023, 201 : 173 - 195
  • [23] Uniform regularity for a density-dependent incompressible Hall-MHD system
    Fan, Jishan
    Zhou, Yong
    APPLIED MATHEMATICS LETTERS, 2022, 132
  • [24] Singularity formation for the incompressible Hall-MHD equations without resistivity
    Chae, Dongho
    Weng, Shangkun
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (04): : 1009 - 1022
  • [25] Regularity criteria for 3D Hall-MHD equations
    Xuanji Jia
    Yong Zhou
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [26] On the well-posedness in Besov-Herz spaces for the inhomogeneous incompressible Euler equations
    Ferreira, Lucas C. F.
    Machado, Daniel F.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2024, 21 (01) : 1 - 29
  • [27] Regularity criteria for 3D Hall-MHD equations
    Jia, Xuanji
    Zhou, Yong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06):
  • [28] A logarithmically improved regularity criterion for the 3D Hall-MHD equations in Besov spaces with negative indices
    Ye, Zhuan
    APPLICABLE ANALYSIS, 2017, 96 (16) : 2669 - 2683
  • [29] On regularity criteria for the 3D Hall-MHD equations in terms of the velocity
    He, Fangyi
    Ahmad, Bashir
    Hayat, Tasawar
    Zhou, Yong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 32 : 35 - 51
  • [30] Well-posedness and regularity for fractional damped wave equations
    Zhou, Yong
    He, Jia Wei
    MONATSHEFTE FUR MATHEMATIK, 2021, 194 (02): : 425 - 458